Conventional in situ hydrogel micropatterning techniques work successfully for relatively stiff hydrogels, but they often result in locally damaged surfaces upon demolding in the case of soft and fragile polymer networks formed at low precursor concentration. To overcome this limitation, we have developed a versatile method, termed soft embossing, for the topographical micropatterning of fragile chemically cross-linked polymer hydrogels. Soft embossing is based on the imprinting of a microstructured template into a gel surface that is only partially cross-linked. Free functional groups continue to be consumed and upon complete cross-linking irreversibly confine the microstructure on the gel surface. Here we identify and optimize the parameters that control the soft embossing process and show that this method allows the fabrication of desired topographies with good fidelity. Finally, one of the produced gel micropatterns, an array of microwells, was successfully utilized forculturing and analyzing live single hematopoietic stem cells. Confining the stem cells to their microwells allowed for efficient quantification of their growth potential during in vitro culturing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la9002115DOI Listing

Publication Analysis

Top Keywords

soft embossing
16
hydrogels soft
8
gel surface
8
stem cells
8
soft
5
micropatterning hydrogels
4
embossing
4
embossing conventional
4
conventional situ
4
situ hydrogel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!