In this communication, we report a synthesis of anisotropic colloidal superparticles (SPs) from CdSe/CdS semiconductor nanorods. These anisotropic SPs are cylindrical disks or stacked-disk arrays. We attribute the major driving forces controlling the SP shape to interparticle interactions between nanorods and solvophobic interactions between a superparticle and its surrounding solvent. According to their sizes (or volumes), the SPs adopt either single- or multilayered structures. In addition, these SPs exhibit linearly polarized emissions, demonstrating their potential role as useful components in devices such as polarized light-emitting diodes and electrooptical modulators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713657 | PMC |
http://dx.doi.org/10.1021/ja9015183 | DOI Listing |
Sci Rep
December 2024
Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland.
The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Semiconductor Systems Engineering, Convergence Engineering for Intelligent Drone, Institute of Semiconductor and System IC, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
NO is a toxic gas that can damage the lungs with prolonged exposure and contribute to health conditions, such as asthma in children. Detecting NO is therefore crucial for maintaining a healthy environment. Carbon nanotubes (CNTs) are promising materials for NO gas sensors due to their excellent electronic properties and high adsorption energy for NO molecules.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson Air Force Base, Wright-Patterson AFB, Ohio 45433, United States.
Peptides, due to their diverse and controllable properties, are used as both liquid and gas phase recognition elements for both biological and chemical targets. While it is well understood how binding of a peptide to a biomolecule can be converted into a sensing event, there is not the same mechanistic level of understanding with regard to how peptides modulate the selectivity of semiconductor/conductor-based gas sensors. Notably, a rational, mechanistic study has not yet been performed to correlate peptide properties to the sensor response for volatile organic compounds (VOCs) as a function of chemical properties.
View Article and Find Full Text PDFAdv Mater
December 2024
Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
Semiconducting single-wall carbon nanotubes (s-SWCNTs) represent one of the most promising materials for surpassing Moore's Law and developing the next generation of electronic devices. Despite numerous developed approaches, reducing the contact resistance of s-SWCNTs networks remains a significant challenge in achieving further enhancements in electronic performance. In this study, antimony triiodide (SbI) is efficiently encapsulated within high-purity s-SWCNTs films at low temperatures, forming 1D SbI@s-SWCNTs vdW heterostructures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan.
ZnO nanorods have attracted much attention owing to their outstanding properties for chemical gas sensors. Although they show greater sensing properties than conventional nanoparticulate ZnO, high operation temperature (>250-350 °C) is required for them to work even if precious metals are deposited on them to sensitize their sensing properties. Light irradiation is one solution for overcoming the high operation temperature and the gas selectivity because it assists the oxidation activity on the surface that affects the sensor response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!