Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plasma levels of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) and oxidized low density lipoprotein (oxLDL) have been identified as risk factors for cardiovascular disease. Lp-PLA(2) is the sole enzyme responsible for the hydrolysis of oxidized phospholipids on LDL particles in atherosclerotic plaques. We have studied the relationship between Lp-PLA(2) and oxLDL in carotid endarterectomy (CEA) tissues and in matched plasmas. In extracts from CEA anatomical segments, the levels of oxLDL were significantly associated with the levels of Lp-PLA(2) protein (r = 0.497) and activity (r = 0.615). OxLDL and Lp-PLA(2) mass/activity were most abundant in the carotid bifurcation and internal segments where plaque was most abundant. In extracts from CEA atheroma, the levels of oxLDL and Lp-PLA(2) were significantly correlated (r = 0.634). In matched plasma and atheroma extracts, the levels of Lp-PLA(2) were negatively correlated (r = - 0.578). The ratio of Lp-PLA(2) to oxLDL was higher in atheromatous tissue (277:1) than in normal tissue (135:1) and plasma (13:1). Immunohistochemical experiments indicated that in plaques, oxLDL and Lp-PLA(2) existed in overlapping but distinctly different distribution. Fluorescence microscopy showed both oxLDL and Lp-PLA(2) epitopes on the same LDL particle in plasma but not in plaque. These results suggest that the relationship between Lp-PLA(2) and oxLDL in the atherosclerotic plaque is different from that in the plasma compartment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724786 | PMC |
http://dx.doi.org/10.1194/jlr.M800342-JLR200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!