Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Flying animals exhibit remarkable capabilities for both generating maneuvers and stabilizing their course and orientation after perturbation. Here we show that flapping fliers ranging in size from fruit flies to large birds benefit from substantial damping of angular velocity through a passive mechanism termed flapping counter-torque (FCT). Our FCT model predicts that isometrically scaled animals experience similar damping on a per-wingbeat time scale, resulting in similar turning dynamics in wingbeat time regardless of body size. The model also shows how animals may simultaneously specialize in both maneuverability and stability (at the cost of efficiency) and provides a framework for linking morphology, wing kinematics, maneuverability, and flight dynamics across a wide range of flying animals spanning insects, bats, and birds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1168431 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!