The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 muM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (K(d) = 132 +/- 13 muM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein-protein complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685109PMC
http://dx.doi.org/10.1093/nar/gkp211DOI Listing

Publication Analysis

Top Keywords

residual dipolar
8
dipolar couplings
8
cd2ap sh3-cubiquitin
8
sh3-cubiquitin complex
8
structural biology
8
weakly interacting
8
partner proteins
8
equilibrium mixtures
8
accurate characterization
4
weak
4

Similar Publications

Three elastomer samples were prepared using GS530SP01K1 silicone rubber (ProChima). The samples included pure silicone rubber (SR), a silicone rubber-graphene composite (SR-GR), and a silicone rubber-magnetite composite (SR-FeO). The magnetite was synthesized via chemical precipitation but was not washed to remove residual ions.

View Article and Find Full Text PDF

Alpha-helices as alignment reporters in residual dipolar coupling analysis of proteins.

J Biomol NMR

December 2024

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.

Inclusion of residual dipolar couplings (RDCs) during the early rounds of protein structure determination requires use of a floating alignment tensor or knowledge of the alignment tensor strength and rhombicity. For proteins with interdomain motion, such analysis can falsely hide the presence of domain dynamics. We demonstrate for three proteins, maltotriose-ligated maltose binding protein (MBP), Ca-ligated calmodulin, and a monomeric N-terminal deletion mutant of the SARS-CoV-2 Main Protease, MPro, that good alignment tensor estimates of their domains can be obtained from RDCs measured for residues that are identified as α-helical based on their chemical shifts.

View Article and Find Full Text PDF

Cyclic Peptide C5aR1 Antagonist Design Using Solution Conformational Analysis Derived from Residual Dipolar Couplings.

ACS Med Chem Lett

November 2024

Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States.

To gain further insight into the conformational properties of small cyclic peptides that bind to the G-protein coupled receptor C5aR1, we report here for the first time the elucidation of three peptide solution conformations using residual dipolar couplings and NMR temperature coefficients. Each of these peptides varies by at least one amino acid, adopts a different intramolecular hydrogen bonding pattern, and has a different solution conformation. The solution conformations were used in combination with a homology structure of C5aR1 as a design template for increasing the potency of peptide leads for the C5a receptor.

View Article and Find Full Text PDF

Quantum computation and simulation rely on long-lived qubits with controllable interactions. Trapped polar molecules have been proposed as a promising quantum computing platform, offering scalability and single-particle addressability while still leveraging inherent complexity and strong couplings of molecules. Recent progress in the single quantum state preparation and coherence of the hyperfine-rotational states of individually trapped molecules allows them to serve as promising qubits, with intermolecular dipolar interactions creating entanglement.

View Article and Find Full Text PDF

Quantitative magnetization transfer (MT) imaging enables noninvasive characterization of the macromolecular environment of tissues. However, recent work has highlighted that the quantification of MT parameters using saturation radiofrequency (RF) pulses exhibits orientation dependence in ordered tissue structures, potentially confounding its clinical applications. Notably, in tissues with ordered structures, such as articular cartilage and myelin, the residual dipolar coupling (RDC) effect can arise owing to incomplete averaging of dipolar-dipolar interactions of water protons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!