This paper investigates the effect of native beta-cyclodextrin (beta-CD) and its CD derivatives, such as hydroxypropyl-beta-cyclodextrin (HPBCD) and randomly methylated-beta-cyclodextrin (RAMEB), on the solubilization of a high molecular weight polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) and on its degradation by Fenton's reaction. The results show that BaP apparent solubility was significantly increased in the presence of cyclodextrin (CD) in the following order: beta-CD

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2009.03.012DOI Listing

Publication Analysis

Top Keywords

high molecular
8
molecular weight
8
weight polycyclic
8
polycyclic aromatic
8
aromatic hydrocarbon
8
hydrocarbon benzo[a]pyrene
8
fenton degradation
4
degradation assisted
4
assisted cyclodextrins
4
cyclodextrins high
4

Similar Publications

Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.

View Article and Find Full Text PDF

Helical Assemblies of Colloidal Nanocrystals with Long-Range Order and Their Fusion into Continuous Structures.

J Am Chem Soc

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

Chirality epitomizes the sophistication of chemistry, representing some of its most remarkable achievements. Yet, the precise synthesis of chiral structures from achiral building blocks remains a profound and enduring challenge in synthetic chemistry and materials science. Here, we demonstrate that achiral colloidal nanocrystals, including Au and Ag nanocrystals, can assemble into long-range-ordered helical assemblies with the assistance of chiral molecules.

View Article and Find Full Text PDF

The ability of environmental cues to trigger alcohol-seeking behaviours is thought to facilitate problematic alcohol use. Individuals' tendency to attribute incentive salience to cues may increase the risk of addiction. We sought to study the relationship between incentive salience and alcohol addiction using non-preferring rats to model the heterogeneity of human alcohol consumption, investigating both males and females.

View Article and Find Full Text PDF

Interpreting Variants of Uncertain Significance in PCD: Abnormal Splicing Caused by a Missense Variant of DNAAF3.

Mol Genet Genomic Med

January 2025

The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.

Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.

Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.

View Article and Find Full Text PDF

The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!