Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Endogenous circadian and circannual rhythms may exist in the metabolism, ventilation, and breathing pattern of turtles that could further prolong dive times during daily and seasonal periods of reduced activity. To test this hypothesis, turtles were held under seasonal or constant environmental conditions over a 1-yr period, and in each season, V(O)(2) and respiratory variables were measured in all animals under both the prevailing seasonal conditions and the constant conditions for 24 h. Endogenous circadian and circannual rhythms in metabolism and ventilation occurred independent of ambient temperature, photoperiod, and activity, although long-term entrainment to daily and seasonal changes in temperature and photoperiod were required for them to be expressed. Metabolism and ventilation were always higher during the photophase, and the day-night difference was greater at any given temperature when the photoperiod was provided. When corrected for temperature, turtles had elevated metabolic and ventilation rates in the fall and spring (corresponding to the reproductive seasons) and suppressed metabolism and ventilation during winter. The strength of the circadian rhythm varied seasonally, with proportionately larger day-night differences in colder seasons. Daily and seasonal cycles in ventilation largely followed metabolism, although daily and seasonal changes did occur in the breathing pattern independent of levels of total ventilation. These endogenous circadian and circannual changes in metabolism, ventilation, and breathing pattern prolonged dive times at night and in winter and may serve to reduce the costs of breathing and transport and risk of predation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/597518 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!