Recent evidence indicates that 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), a marker enzyme of myelin and oligodendrocytes, is also present in neural and nonneural mitochondria. However, its role in mitochondria is still completely unclear. We found CNP in rat brain mitochondria and studied the effects of CNP substrates, 2',3'-cyclic nucleotides, on functional parameters of rat brain mitochondria. 2',3'-cAMP and 2',3'-cNADP stimulated Ca(2+) overload-induced Ca(2+) release from mitochondrial matrix. This Ca(2+) release under threshold Ca(2+) load correlated with membrane potential dissipation and mitochondrial swelling. The effects of 2',3'-cyclic nucleotides were suppressed by cyclosporin A, a potent inhibitor of permeability transition (PT). PT development is a key stage in initiation of apoptotic mitochondria-induced cell death. 2',3'-cAMP effects were observed on the functions of rat brain mitochondria only when PT was developed. This demonstrates involvement of 2',3'-cAMP in PT regulation in rat brain mitochondria. We also discovered that, under PT development, the specific enzymatic activity of CNP was reduced. Thus we hypothesize that suppression of CNP activity under threshold Ca(2+) load leads to elevation of 2',3'-cAMP levels that, in turn, promote PT development in rat brain mitochondria. Similar effects of 2',3'-cyclic nucleotides were observed in rat liver mitochondria. Involvement of CNP in PT regulation was confirmed in experiments using mitochondria from CNP-knockdown oligodendrocytes (OLN93 cells). CNP reduction in these mitochondria correlated with lowering the threshold for Ca(2+) overload-induced Ca(2+) release. Thus our results reveal a new function for CNP and 2',3'-cAMP in mitochondria, being a regulator/promotor of mitochondrial PT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00006.2009 | DOI Listing |
Metab Brain Dis
January 2025
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.
Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.
View Article and Find Full Text PDF() is a causative gene for genetic hydrocephalus found in hemorrhagic hydrocephalus () mice. The knockout (KO) rat has subcortical heterotopia with frequent brain hemorrhage as seen in mice. In this study, we report aberrant alpha-smooth muscle actin (α-SMA) expression in the wall of lateral ventricle of the KO rats.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.
Schizophrenia is a chronic and severe mental disorder. It is currently treated with antipsychotic drugs (APD). However, APD's work only in a limited number of patients and may have cognition impairing side effects.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089-0372, USA.
Habitual consumption of low-calorie sweeteners (LCS) during juvenile-adolescence can lead to greater sugar intake later in life. Here, we investigated if exposure to the LCS Acesulfame Potassium (Ace-K) during this critical period of development reprograms the taste system in a way that would alter hedonic responding for common dietary compounds. Results revealed that early-life LCS intake not only enhanced the avidity for a caloric sugar (fructose) when rats were in a state of caloric need, it increased acceptance of a bitterant (quinine) in Ace-K-exposed rats tested when middle-aged.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany.
Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!