The human immunodeficiency virus type 1 (HIV-1) accessory protein Vif is encoded by an incompletely spliced mRNA resulting from splicing of the major splice donor in the HIV-1 genome, 5' splice site (5'ss) D1, to the first splice acceptor, 3'ss A1. We have shown previously that splicing of HIV-1 vif mRNA is tightly regulated by suboptimal 5'ss D2, which is 50 nucleotides downstream of 3'ss A1; a GGGG silencer motif proximal to 5'ss D2; and an SRp75-dependent exonic splicing enhancer (ESEVif). In agreement with the exon definition hypothesis, mutations within 5'ss D2 that are predicted to increase or decrease U1 snRNP binding affinity increase or decrease the usage of 3'ss A1 (D2-up and D2-down mutants, respectively). In this report, the importance of 5'ss D2 and ESEVif for avoiding restriction of HIV-1 by APOBEC3G (A3G) was determined by testing the infectivities of a panel of mutant viruses expressing different levels of Vif. The replication of D2-down and ESEVif mutants in permissive CEM-SS cells was not significantly different from that of wild-type HIV-1. Mutants that expressed Vif in 293T cells at levels greater than 10% of that of the wild type replicated similarly to the wild type in H9 cells, and Vif levels as low as 4% were affected only modestly in H9 cells. This is in contrast to Vif-deleted HIV-1, whose replication in H9 cells was completely inhibited. To test whether elevated levels of A3G inhibit replication of D2-down and ESEVif mutants relative to wild-type virus replication, a Tet-off Jurkat T-cell line that expressed approximately 15-fold-higher levels of A3G than control Tet-off cells was generated. Under these conditions, the fitness of all D2-down mutant viruses was reduced relative to that of wild-type HIV-1, and the extent of inhibition was correlated with the level of Vif expression. The replication of an ESEVif mutant was also inhibited only at higher levels of A3G. Thus, wild-type 5'ss D2 and ESEVif are required for production of sufficient Vif to allow efficient HIV-1 replication in cells expressing relatively high levels of A3G.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687371 | PMC |
http://dx.doi.org/10.1128/JVI.02231-08 | DOI Listing |
Heliyon
June 2024
Tongji University School of Medicine, Tongji University, Shanghai 200120, China.
SARS-CoV-2 evolves gradually to cause COVID-19 epidemic. One of driving forces of SARS-CoV-2 evolution might be activation of apolipoprotein B mRNA editing catalytic subunit-like protein 3 (APOBEC3) by inflammatory factors. Here, we aimed to elucidate the effect of the APOBEC3-related viral mutations on the infectivity and immune evasion of SARS-CoV-2.
View Article and Find Full Text PDFInt J Mol Sci
November 2023
Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA.
Identifying and understanding genetic factors that influence the propagation of the human respiratory syncytial virus (RSV) can lead to health benefits and possibly augment recent vaccine approaches. We previously identified a p53/immune axis in which the tumor suppressor p53 directly regulates the expression of immune system genes, including the seven members of the APOBEC3 family of DNA cytidine deaminases (A3), which are innate immune sentinels against viral infections. Here, we examined the potential p53 and A3 influence in RSV infection, as well as the overall p53-dependent cellular and p53/immune axis responses to infection.
View Article and Find Full Text PDFNature
March 2023
Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
The APOBEC3 (A3) proteins are host antiviral cellular proteins that hypermutate the viral genome of diverse viral families. In retroviruses, this process requires A3 packaging into viral particles. The lentiviruses encode a protein, Vif, that antagonizes A3 family members by targeting them for degradation.
View Article and Find Full Text PDFChin Med J (Engl)
November 2022
Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
Background: Ubiquitination plays an essential role in many biological processes, including viral infection, and can be reversed by deubiquitinating enzymes (DUBs). Although some studies discovered that DUBs inhibit or enhance viral infection by various mechanisms, there is lack of information on the role of DUBs in virus regulation, which needs to be further investigated.
Methods: Immunoblotting, real-time polymerase chain reaction, in vivo / in vitro deubiquitination, protein immunoprecipitation, immunofluorescence, and co-localization biological techniques were employed to examine the effect of ubiquitin-specific protease 3 (USP3) on APOBEC3G (A3G) stability and human immunodeficiency virus (HIV) replication.
Histopathology
March 2023
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
Aims: Primary head/neck mucosal melanomas (MMs) are rare and exhibit aggressive biologic behaviour and elevated mutational loads. The molecular mechanisms responsible for high genomic instability observed in head/neck MMs remain elusive. The DNA cytosine deaminase APOBEC3B (A3B) constitutes a major endogenous source of mutation in human cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!