Dendritic cells (DCs) are professional antigen presenting cells to initiate immune response against pathogens, but mechanisms controlling the maturation of DCs are unclear. Here we report that, in the absence of recombination signal binding protein-Jkappa (RBP-J, the transcription factor mediating Notch signaling), lipopolysaccharide-stimulated monocyte-derived DCs are arrested at a developmental stage with few dendrites, low major histocompatibility complex II (MHC II) expression, and reduced motility and antigen presentation ability. RBP-J null DCs had lower expression of CXCR4. Transduction with a CXCR4-expressing lentivirus rescued developmental arrest of RBP-J-deficient DCs. Activation of Notch signaling in DCs up-regulated CXCR4 expression and increased the outgrowth of dendrites and the expression of MHC II. These effects were abrogated by a CXCR4 inhibitor. Therefore, Notch signaling is essential for DCs to transit from a dendrite(low)MHC II(low) immature state into a dendrite(high)MHC II(high) mature state, during the lipopolysaccharide-induced DC maturation, most likely through the up-regulation of CXCR4.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708893PMC
http://dx.doi.org/10.1074/jbc.M901144200DOI Listing

Publication Analysis

Top Keywords

notch signaling
16
lipopolysaccharide-induced maturation
8
dendritic cells
8
up-regulation cxcr4
8
dcs
7
cxcr4
5
maturation bone
4
bone marrow-derived
4
marrow-derived dendritic
4
cells regulated
4

Similar Publications

Maintenance of neural progenitors requires Notch signaling in vertebrate development. Previous study has shown that Jagged2-mediated Notch signaling maintains proliferating neural progenitors in the ventral spinal cord. However, components for Jagged-mediated signaling remain poorly defined during late neurogenesis.

View Article and Find Full Text PDF

Cancer Stem Cells (CSCs) play an important role in the development, resistance, and recurrence of many malignancies. These subpopulations of tumor cells have the potential to self-renew, differentiate, and resist conventional therapy, highlighting their importance in cancer etiology. This review explores the regulatory mechanisms of CSCs in breast, cervical, and lung cancers, highlighting their plasticity, self-renewal, and differentiation capabilities.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, necessitating the development of innovative treatment strategies. Recent research has underscored the significant role of non-coding RNAs (ncRNAs) in CRC pathogenesis, offering new avenues for diagnosis and therapy. In this review, we delve into the intricate roles of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in CRC progression, epithelial-mesenchymal transition (EMT), metastasis, and drug resistance.

View Article and Find Full Text PDF

Type IV collagen expression is regulated by Notch3-mediated Notch signaling during angiogenesis.

Biochem Biophys Res Commun

January 2025

Graduate School of Engineering, Kogakuin University, Tokyo, Japan; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan. Electronic address:

Angiogenesis, the process of new blood vessel formation, involves endothelial cell proliferation and migration, accompanied by the remodeling of the extracellular matrix (ECM). Type IV collagen, a major ECM component, plays a critical role in vascular basement membrane regeneration, influencing cell polarity, migration, and survival. This study examines the regulatory role of Notch signaling, mediated by Notch3, in type IV collagen expression using TIG-1 fibroblasts and a co-culture angiogenesis model with human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Background: Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!