The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a multifunctional role in an array of important physiological processes in insects, including regulation of sex pheromone biosynthesis in moths. A cyclic PK/PBAN analog (cyclo[NTSFTPRL]) retains significant activity on the pheromonotropic HevPBANR receptor from the tobacco budworm Heliothis virescens expressed in CHO-K1 cells. Previous studies indicate that this rigid, cyclic analog adopts a type I beta-turn with a transPro over residues TPRL within the core PK/PBAN region. An analog containing an (E)-alkene, trans-Pro mimetic motif was synthesized, and upon evaluation on the HevPBANR receptor found to have an EC(50) value that is not statistically different from a parent C-terminal PK/PBAN hexapeptide sequence. The results, in aggregate, provide strong evidence for the orientation of Pro and the core conformation of PK/PBAN neuropeptides during interaction with the expressed PBAN receptor. The work further identifies a novel scaffold with which to design mimetic PBAN analogs as potential leads in the development of environmentally favorable pest management agents capable of disrupting PK/PBAN-regulated pheromone signaling systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2009.03.036DOI Listing

Publication Analysis

Top Keywords

pk/pban analog
8
analog e-alkene
8
e-alkene trans-pro
8
core conformation
8
hevpbanr receptor
8
pk/pban
6
potent activity
4
activity pk/pban
4
analog
4
trans-pro mimic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!