A stable and selective electrochemical biosensor for the liver enzyme alanine aminotransferase (ALT).

Biosens Bioelectron

Centre for Research in Electroanalytical Technologies (CREATE), Department of Science, Institute of Technology Tallaght, Tallaght, Dublin 24, Ireland.

Published: May 2009

An electrochemical method to determine alanine aminotransferase (ALT) activity over its normal and elevated physiological range was developed based upon detection of L-glutamate at a glutamate oxidase-modified platinum electrode. Measurements were carried out in the presence of ALT co-substrates L-alanine and alpha-ketoglutarate and current response from either the oxidation of hydrogen peroxide or the re-oxidation of the mediator ferrocene carboxylic acid was employed. The enzyme electrode was tested over a 6-month period and found to retain 79% of its original activity towards ALT detection with >200 measurements performed over this time. Signals associated with interfering electroactive species (ascorbic acid and uric acid) were eliminated using background subtraction at a denatured glutamate oxidase enzyme electrode. The sensitivity of the device was found to be 0.845 nA U(-1) L ALT with t(90)=180 s, linear range 10-1000 U L(-1) and LOD of 3.29 U L(-1) using amperometry at E(app)=0.4 V vs. Ag/AgCl at 308 K (35 degrees C).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2009.02.032DOI Listing

Publication Analysis

Top Keywords

alanine aminotransferase
8
aminotransferase alt
8
enzyme electrode
8
alt
5
stable selective
4
selective electrochemical
4
electrochemical biosensor
4
biosensor liver
4
liver enzyme
4
enzyme alanine
4

Similar Publications

Ice plant () is a vegetable with various therapeutic uses, one of which is its ability to prevent diabetes. The present study examined the insulin secretion effect related to the mechanism of action of ice plant extract (IPE) and its active compound D-pinitol in a rat insulin-secreting β-cell line, INS-1, as well as in diabetic rats. : The glucose-stimulated insulin secretion (GSIS) test and Western blotting were used to measure GSIS.

View Article and Find Full Text PDF

Effectiveness of Early Versus Late Time-Restricted Eating Combined with Physical Activity in Overweight or Obese Women.

Nutrients

January 2025

Interdisciplinary Laboratory in Neurosciences, Physiology, and Psychology: Physical Activity, Health, and Learning (LINP2), UFR STAPS, Paris Nanterre University, 92000 Nanterre, France.

Aims: To evaluate the effectiveness of a dual approach involving time-restricted eating (TRE) at different times of the day combined with physical activity (PA) on functional capacity and metabolic health in overweight or obese women.

Methods: Random allocation of sixty-one participants into four groups: early time-restricted eating plus physical activity (ETRE-PA, n = 15, 31.8 ± 10.

View Article and Find Full Text PDF

Background/objectives: Despite the abundant body of evidence linking high-intensity interval training (HIIT) to cardiometabolic markers, little is known about how HIIT affects liver enzymes, particularly in obese adolescents. This study aimed to investigate the effects of HIIT on metabolic dysfunction-associated steatotic liver disease (MASLD)-related biomarkers in overweight/obese adolescent girls.

Methods: Thirty-three overweight/obese adolescent girls (age, 17.

View Article and Find Full Text PDF

Comparisons of Post-Load Glucose at Different Time Points for Identifying High Risks of MASLD Progression.

Nutrients

December 2024

Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou 510080, China.

: The 1-h post-load plasma glucose was proposed to replace the current OGTT criteria for diagnosing prediabetes/diabetes. However, it remains unclear whether it is superior in identifying progressive metabolic dysfunction-associated steatotic liver disease (MASLD), and thus we aimed to clarify this issue. : Consecutive Asian participants (non-MASLD, = 1049; MASLD, = 1165) were retrospectively enrolled between June 2012 and June 2024.

View Article and Find Full Text PDF

Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this association remain unclear. In our study, we performed biochemical analyses of serum and histopathological examinations of liver tissue in mice. To preliminarily explore the molecular mechanisms of tirzepatide on metabolic dysfunction-associated fatty liver disease (MAFLD), liquid chromatography-mass spectrometry (LC-MS) was employed for comprehensive metabolomic, lipidomic, and proteomic analyses in MAFLD mice fed a high-fat diet (HFD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!