Quantification of segment soft and rigid tissue masses in living people is important for a variety of clinical and biomechanical research applications including wobbling mass modeling. Although Dual-energy X-ray Absorptiometry (DXA) is widely accepted as a valid method for this purpose, the reliability of manual segmentation from DXA scans using custom regions of interest (ROIs) has not been evaluated to date. Upper and lower extremity images of 100 healthy adults who underwent a full body DXA scan in the supine position were manually segmented by 3 measurers independently using custom ROIs. Actual tissue masses (fat mass, lean mass, bone mineral content) of the arm, arm with shoulder, forearm, forearm and hand, thigh, leg, and leg and foot segments were quantified bilaterally from the ROIs. There were significant differences between-measurers, however, percentage errors were relatively small overall (<1-5.98%). Intraclass correlation coefficients (ICCs) were very high between and within-measurers, ranging from 0.990 to 0.999 and 0.990 to 1.00 for the upper and lower extremities, respectively, suggesting excellent reliability. Between and within-measurer errors were comparable in general, and differences between the tissue types were small on average (maximum of 42 and 53g for upper and lower extremities, respectively). These results suggest that manual segmentation of DXA images using ROIs is a reliable method of estimating soft and rigid tissues in living people.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2009.02.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!