The liver is a key organ in numerous metabolic pathways, in cholesterol metabolism, and in production of coagulation factors. Therefore, gene transfer to hepatocytes has been extensively pursued. There are numerous biological parameters that may affect the outcome of hepatocyte-directed gene transfer. Species or strain variation of any of these multiple determinants hinders the process of clinical translation. This review specifically focuses on functional aspects of liver histology that are pertinent for gene transfer to parenchymal liver cells. We discuss the reticulo-endothelial cells of the liver and the spleen, and their impact on innate immune responses after adenoviral transfer and on vector clearance. Liver sinusoidal endothelial cells contain pores, called fenestrae, and have no basal lamina. Fenestrae are clustered in sieve plates and may provide direct access for circulating gene transfer vectors to the space of Disse, in which microvilli of parenchymal liver cells protrude. We present multiple lines of evidence that the species differences in the diameter of sinusoidal fenestrae are a critical determinant of transgene expression after adenoviral transfer. The small diameter of fenestrae in humans should be considered in any rational design of gene transfer technologies for hepatocyte-directed transfer. Hydrodynamic gene transfer is highly successful in rodents. The significantly lower efficacy in higher species may also partially be due to species differences in liver architecture. Finally, we discuss species differences in adaptive immune responses against the transgene product that may constitute one of the most significant hurdles for clinical translation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/156652309787909562 | DOI Listing |
Environ Sci Technol
January 2025
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
The plastisphere, defined as the ecological niche for microbial colonization of plastic debris, has been recognized as a hotspot of pathogenic and antibiotic-resistant bacteria. However, the interactions between bacteria and phages facilitated by the plastisphere, as well as their impact on microbial risks to public health, remain unclear. Here, we analyzed public metagenomic data from 180 plastisphere and environmental samples, stemming from four different habitats and two plastic types (biodegradable and nonbiodegradable plastics) and obtained 611 nonredundant metagenome-assembled genomes (MAGs) and 4061 nonredundant phage contigs.
View Article and Find Full Text PDFJ Cell Biochem
January 2025
Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
tRNA-derived fragments (tRFs) are a newly recognized class of small noncoding RNAs (sncRNAs) that play significant roles in various diseases. The Wnt pathway plays a key role in various physiological processes such as embryonic development, tissue renewal and regeneration. In the regulation of Wnt/β-catenin, Forkhead box k1(FOXK1), Frizzled class receptor 3 (FZD3), and Wnt5b can be targeted and inhibited by three tRFs: tRF3008A targets FOXK1 to inhibit colorectal cancer (CRC), 5'-tiRNAVal targets FZD3 to inhibit breast cancer (BrC), and tRF-22-8BWS7K092 targets Wnt5b to induce ferroptosis in lung cells.
View Article and Find Full Text PDFArch Insect Biochem Physiol
January 2025
College of Agriculture, Ibaraki University, Inashiki, Japan.
Aphids exhibit a unique reproductive strategy known as pseudoplacental viviparity, in which embryos develop internally and are thought to receive nutrients such as sugars and amino acids directly from the maternal hemolymph through an ovariole sheath, bypassing the need for traditional yolk storage. This system enables viviparous aphids to adapt to diverse and potentially stressful environments by transmitting maternal environmental cues that influence transgenerational plasticity. However, the mechanisms underlying this nutrient-mediated plasticity are poorly understood.
View Article and Find Full Text PDFChin Med J Pulm Crit Care Med
December 2024
Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
Background: Glucocorticoid-induced transcript 1 (GLCCI1) has been reported to be associated with the efficiency of inhaled glucocorticoids in patients with asthma. This study aimed to investigate the role of GLCCI1 in the regulation of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) by the phosphatidylinositol 3-kinase (PI3K) pathway in the pathogenesis of allergic asthma.
Methods: The expression levels of genes encoding GLCCI1, NLRP3 inflammasome components, and PI3K pathway-related indicators were detected in cells isolated from induced sputum from patients with asthma and healthy controls.
Front Genet
January 2025
National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China.
The Ogura cytoplasmic male sterility (CMS) line of has gained significant attention for its use in harnessing heterosis. It remains unaffected by temperature and environment and is thorough and stable. The Ogura cytoplasmic restorer line of is derived from the distant hybridization of and , but it carried a large number of radish fragments into , because there is no homologous allele of the restorer gene in , transferring it becomes challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!