Vacancy segregation in the initial oxidation stages of the TiN(100) surface.

J Chem Phys

Hybrid Materials Interfaces Group, Faculty of Production Engineering and Bremen Center for Computational Materials Science, University of Bremen, D-28359 Bremen, Germany.

Published: April 2009

The well-known corrosion resistance and biocompatibility of TiN depend on the structural and chemical properties of the stable oxide film that forms spontaneously on its surface after exposure to air. In the present work, we focus on the atomistic structure and stability of the TiN(100) surface in contact with an oxidizing atmosphere. The early oxidation stages of TiN(100) are investigated by means of first-principles molecular dynamics (FPMD). We observe selective oxidation of Ti atoms and formation of an ultrathin Ti oxide layer, while Ti vacancies are left behind at the metal/oxide interface. Within the formalism of ab initio thermodynamics we compute the segregation energies of vacancies and vacancy clusters at the metal/oxide interface, comparing the stability of the system obtained by FPMD simulations with ideally reconstructed models. We find that the localization of Ti vacancies in the thin oxide layer and at the TiN/oxide interface is thermodynamically stable and may account for the early removal of N atoms from the interface by segregation of N vacancies from the bulk reservoir. We suggest that superficial oxidation may proceed along two distinct possible pathways: a thermodynamically stable path along the potential energy minimum surface and a metastable, kinetically driven path that results from the high heat release during the dissociation of O(2).

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3105992DOI Listing

Publication Analysis

Top Keywords

oxidation stages
8
stages tin100
8
tin100 surface
8
oxide layer
8
metal/oxide interface
8
thermodynamically stable
8
vacancy segregation
4
segregation initial
4
oxidation
4
initial oxidation
4

Similar Publications

Performance evaluation of the amperometric total residual oxidant sensor with the electrochlorination-based Ballast Water Management System.

Water Sci Technol

January 2025

Qingdao Branch of Luoyang Ship Material Research Institute, 149-1, Zhuzhou Road, Laoshan District, Qingdao, Shandong, China; Sunrui Marine Environment Engineering Co., Ltd, Qingdao, Shandong, China.

Nowadays, performance studies on the amperometric total residual oxidant (TRO) sensor are only in the bench test stage and have not been conducted under specific maritime conditions with Ballast Water Management System (BWMS). In this study, the application of the amperometric TRO sensor in land-based biological efficacy (BE) testing, operation and maintenance (O&M) testing, as well as shipboard (SB) testing, was explored by comparing with the existing di-phenylene-diamine (DPD) TRO sensor. The results showed that the average TRO measurement deviation between the amperometric sensor and the DPD sensor was within ±10% in valid BE test cycles and the O&M testing exceeding 47 operating hours.

View Article and Find Full Text PDF

Background: (BC), also named Niuhuang in Chinese, is utilized as a resuscitation drug in Traditional Chinese Medicine (TCM) for the treatment of neurological disorders. Ischemic stroke (IS) is a significant global public health issue that currently lacks safe and effective therapeutic drugs. Ongoing efforts are focused on identifying effective treatment strategies from Traditional, Complementary, and Integrative Medicine.

View Article and Find Full Text PDF

Human platelet lysate: a potential therapeutic for intracerebral hemorrhage.

Front Neurosci

January 2025

Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Intracerebral hemorrhage (ICH) is a major public health challenge worldwide, and is associated with elevated rates of mortality, disability, and morbidity, especially in low- and middle-income nations. However, our knowledge of the detailed molecular processes involved in ICH remains insufficient, particularly those involved in the secondary injury stage, resulting in a lack of effective treatments for ICH. Human platelet lysates (HPL) are abundant in bioactive factors, and numerous studies have demonstrated their beneficial effects on neurological diseases, including their anti-neuroinflammatory ability, anti-oxidant effects, maintenance of blood-brain barrier integrity, and promotion of neurogenesis.

View Article and Find Full Text PDF

Methods based on enzyme labelling strategies have been widely developed for capacitance immunoassays, but most suffer from low sensitivity and are unfavorable for routine use in the early stages of diagnostics. Herein, we designed a highly efficient capacitance immunosensing method for the low-abundance neuroblastoma biomarker neuron-specific enolase (NSE) using an interdigitated micro-comb electrode. Initially, monoclonal mouse anti-human NSE capture antibodies were immobilized on the interdigitated gold electrodes using bovine serum albumin.

View Article and Find Full Text PDF

BACKGROUND Indirect ceramic restorations often need multiple firings to match the shade of natural teeth or need after-correction and ceramic addition during the clinical trial stage. Many studies have examined how multiple firings affect the mechanical characteristics of zirconia-veneered prostheses. The effect of firing number on adhesion between these core and heat-pressed lithium disilicate veneering ceramics is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!