The experiments presented in this paper explore the hypothesis that cochlear gain is reduced, in a frequency-specific manner, over the course of a sound (called a "precursor") which was designed to activate the medial olivo-cochlear reflex (MOCR). Psychophysical tuning curves (PTCs) and off-frequency growth of masking (GOM) functions were measured with two precursors. The on-frequency precursor condition, which was hypothesized to activate the MOCR at the signal frequency, produced a PTC with a lower best frequency in all subjects consistent with less gain. This same condition produced a GOM function with less gain and an elevated compression breakpoint. The data were analyzed with two models. The gain-reduction model, which assumed a change in the basilar membrane input-output function, was superior at predicting the data relative to a model of additivity of masking.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736734 | PMC |
http://dx.doi.org/10.1121/1.3081383 | DOI Listing |
Chem Asian J
January 2025
University of Shanghai for Science and Technology, School of Materials and Chemistry, Shanghai, CHINA.
Ln-MOFs, composed of lanthanide ions and functional organic ligands, are porous materials with tunable structures and unique luminescent properties. However, the interplay between ligand AIE properties and the framework's "antenna effect" on MOF morphology is understudied. Here, Tb-D-Cam-TPTB was synthesized via solvothermal method using TPTB (persulfurated arene) as the primary ligand, D-Cam as the auxiliary ligand, and Tb3+ as the metal ion.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China.
Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
Background: Compelling evidence has shown that long non-coding RNAs (lncRNAs) contribute to Alzheimer's disease (AD) pathogenesis including β-amyloid plaque deposition (Aβ) and intracellular neurofibrillary tangles. In this study, we aimed to investigate the critical role of lncRNA Gm20063 in AD.
Method: Six-month-old male APP/PS1 transgenic mice and wild type (WT) C57BL/6 (B6) littermates were obtained from the Nanjing University Animal Model Research Center.
Background: The limited treatment options for Alzheimer's emphasizes the need to explore novel drug targets and bring new therapeutics to market. Drug repurposing is an efficient route to bring a safe and effective treatment to the clinic. Agomelatine (AGO) was identified by a high-throughput drug screening algorithm as having mechanistic potential to treat Alzheimer's.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!