AI Article Synopsis

Article Abstract

Excited-state quantum chemical calculations of two 2-alkyloamino-6-methyl-4-nitropyridine N-oxides are presented. Several different calculation methods and different basis sets were used, which all lead to similar results, although the precise values of excited-state energies and excited-state dipole moments differ. All methods used predict that in the S(1) excited state four types of isomers occur. In three cases, these excited-state local energy minima correspond to ground-state isomers, and these all have a pi pi* character. The fourth excited-state minimum, which we denote L*, does not have a corresponding ground-state isomer and has an n pi* character. This isomer is stable and plays an important role in understanding the photophysics of these molecules. In addition, we also calculated barriers between these excited-state minima, using predescribed reaction pathways. The theoretical results derived in this Article are confronted with experimental data from earlier papers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp8073927DOI Listing

Publication Analysis

Top Keywords

pi* character
8
excited-state
7
excited-state forms
4
forms 2-methylamino-6-methyl-4-nitropyridine
4
2-methylamino-6-methyl-4-nitropyridine n-oxide
4
n-oxide 2-butylamino-6-methyl-4-nitropyridine
4
2-butylamino-6-methyl-4-nitropyridine n-oxide
4
n-oxide excited-state
4
excited-state quantum
4
quantum chemical
4

Similar Publications

Unusual high fluorescence of a 7,7'-diazaisoindigo derivative: A photophysical study.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain. Electronic address:

7,7'-Diazaisoindigos are π-conjugated compounds but with poor luminescence properties. Their poor luminescence is generally attributed to the twisting around the central C-C bond in the excited state which favors non-radiative decay. We have found an unusual high fluorescence quantum yield (Φ ≈ 15 %) in a N,N‑Octyl-7,7'-diazaisoindigo derivative incorporating two triphenylamine (TPA) subunits at 5,5'-positions (called compound 12).

View Article and Find Full Text PDF

Pendant organic chromophores have been used to improve the photocatalytic performance of many metal-based photosensitizers, particularly in first-row metals, by increasing π conjugation in ligands and lowering the energy of the photoactive absorption band. Using a combination of spectroscopic studies and computational modeling, we rationalize the excited state dynamics of a Co(III) complex containing pendant pyrene moieties, , where = 1,1'-(4-(pyren-1-yl)pyridine-2,6-diyl)bis(3-methyl-1-imidazol-3-ium). displays higher visible absorptivity, and blue luminescence from pyrene singlet excited states compared with [ = 1,1'-(pyridine-2,6-diyl)bis(3-methyl-1-imidazol-3-ium)] in which the pyrene moiety is absent.

View Article and Find Full Text PDF

Azuacenes, defined as azulene fused with acenes in a 6-7-5 ring topology and spanning lengths from 3 to 6 rings, have been synthesized using a new skeleton editing and [3 + 2] annulation synthesis protocol as a distinction regarding the procedures to obtain the 6-5-7 isomers. Comprehensive studies on ground-state and excited-state spectroscopy, electrochemical properties, chemical stability, and solid-state structure have been conducted to compare these azuacenes with acenes. For the same number of rings, we found that azuacenes improve the chemical stability of acenes (i.

View Article and Find Full Text PDF

Purpose: Neurogenic lower urinary tract dysfunction (NLUTD) is highly prevalent among patients with neurologic disorders. Some studies have demonstrated that implantable neuromodulation can improve symptoms of NLUTD. We seek to describe our experience with sacral and pudendal neuromodulation in patients with NLUTD.

View Article and Find Full Text PDF

The last decade has witnessed significant progress in organic electrochemical transistors (OECTs) due to their enormous potential applications in various bioelectronic devices, such as artificial synapses, biological interfaces, and biosensors. The remarkable advance in this field is highly powered by the development of novel organic mixed ionic/electronic conductors (OMIECs). π-Conjugated polymers (CPs), which are widely used in various optoelectronics, are emerging as key channel materials for OECTs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!