A method has been developed for rapid quantification of nine glycolytic intermediates using ultraperformance liquid chromatography/electrospray-tandem mass spectrometry (UPLC/ESI-MS/MS) to monitor the metabolism of glucose during microbial fermentation. Because comprehensive chromatographic separation is not required, analysis time is significantly less than traditional ion exchange liquid chromatography assays or enzymatic assays. Complete glycolytic intermediate analysis by LC/MS/MS can be achieved in less than 7 min per sample. Quantification is accomplished using isotopically labeled glucose, glucose-6-phosphate, and pyruvate as internal standards. In addition, a method to deconvolute peak areas of coeluting structural isomers based on unique product ion ratios has been developed to allow accurate quantification of the individual isomers 2-phosphoglycerate and 3-phosphoglycerate, as well as glucose-6-phosphate and fructose-6-phosphate. Intrasample precisions for glycolytic intermediate measurements in cell-free extracts using this method vary between 0.9% and 11.8%, averaging 3.5% (RSD). Calibration curves are linear over the range 0.1-100 microg/mL, and detection limits are estimated at 2-49 ng/mL. Spike recoveries in cell extracts vary from 53% to 127% averaging 91%. This method has the potential to demonstrate correlation of glycolytic intermediate flux to microbial production profiles toward acceleration of the bioprocess development cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac9004698 | DOI Listing |
J Neurochem
January 2025
The Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA.
Alzheimer disease is a neurodegenerative pathology-modifying mitochondrial metabolism with energy impairments where the effects of biological sex and DNA repair deficiencies are unclear. We investigated the therapeutic potential of dietary ketosis alone or with supplemental nicotinamide riboside (NR) on hippocampal intermediary metabolism and mitochondrial bioenergetics in older male and female wild-type (Wt) and 3xTgAD-DNA polymerase-β-deficient (3xTg/POLβ) (AD) mice. DNA polymerase-β is a key enzyme in DNA base excision repair (BER) of oxidative damage that may also contribute to mitochondrial DNA repair.
View Article and Find Full Text PDFbioRxiv
December 2024
Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK.
The 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) family of proteins are bifunctional enzymes that are of clinical relevance because of their roles in regulating glycolysis in insulin sensitive tissues and cancer. Here, we sought to express recombinant PFKFB2 and develop a robust protocol to measure its kinase activity. These studies resulted in the unexpected finding that bacterially expressed PFKFB2 is phosphorylated on Ser483 but is not a result of autophosphorylation.
View Article and Find Full Text PDFFree Radic Biol Med
December 2024
Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain; Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain. Electronic address:
Background: Sorafenib is a tyrosine kinase inhibitor (TKI) that belongs to the landscape of treatments for advanced stages of hepatocellular carcinoma (HCC). The induction of cell death and cell cycle arrest by Sorafenib has been associated with mitochondrial dysfunction in liver cancer cells. Our research aim was to decipher underlying oxidative and nitrosative stress induced by Sorafenib leading to mitochondrial dysfunction in liver cancer cells.
View Article and Find Full Text PDFJ Bacteriol
December 2024
Department of Microbiology, The Ohio State University, Columbus, Ohio, USA.
Unlabelled: The ability to treat infections is threatened by the rapid emergence of antibiotic resistance among pathogenic microbes. Therefore, new antimicrobials are needed. Here we evaluate mannitol-1-phosphate 5-dehydrogenase (MtlD) as a potential new drug target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!