A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Liquid-crystalline semiconducting copolymers with intramolecular donor-acceptor building blocks for high-stability polymer transistors. | LitMetric

The ability to control the molecular organization of electronically active liquid-crystalline polymer semiconductors on surfaces provides opportunities to develop easy-to-process yet highly ordered supramolecular systems and, in particular, to optimize their electrical and environmental reliability in applications in the field of large-area printed electronics and photovoltaics. Understanding the relationship between liquid-crystalline nanostructure and electrical stability on appropriate molecular surfaces is the key to enhancing the performance of organic field-effect transistors (OFETs) to a degree comparable to that of amorphous silicon (a-Si). Here, we report a novel donor-acceptor type liquid-crystalline semiconducting copolymer, poly(didodecylquaterthiophene-alt-didodecylbithiazole), which contains both electron-donating quaterthiophene and electron-accepting 5,5'-bithiazole units. This copolymer exhibits excellent electrical characteristics such as field-effect mobilities as high as 0.33 cm(2)/V.s and good bias-stress stability comparable to that of amorphous silicon (a-Si). Liquid-crystalline thin films with structural anisotropy form spontaneously through self-organization of individual polymer chains as a result of intermolecular interactions in the liquid-crystalline mesophase. These thin films adopt preferential well-ordered intermolecular pi-pi stacking parallel to the substrate surface. This bottom-up assembly of the liquid-crystalline semiconducting copolymer enables facile fabrication of highly ordered channel layers with remarkable electrical stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja8095569DOI Listing

Publication Analysis

Top Keywords

liquid-crystalline semiconducting
12
highly ordered
8
electrical stability
8
comparable amorphous
8
amorphous silicon
8
silicon a-si
8
semiconducting copolymer
8
thin films
8
liquid-crystalline
7
semiconducting copolymers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!