A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Responses of tissue carbon and delta 13C in epilithic mosses to the variations of anthropogenic CO2 and atmospheric nitrogen deposition in city area]. | LitMetric

AI Article Synopsis

  • The study analyzed carbon and nitrogen levels in mosses from urban to rural areas in Guiyang, discovering that carbon concentrations decreased significantly with distance from the city.
  • The findings indicated that higher nitrogen deposition in urban areas enhanced carbon assimilation and photosynthesis in mosses, leading to differences in isotopic signatures.
  • The research concluded that urban CO2 emissions impacted plant carbon signatures primarily within 20 km of the city, highlighting the relationship between urban pollution and ecosystem health.

Article Abstract

We investigated the carbon (C) and nitrogen (N) concentrations and isotopic signatures (delta 13C and delta15 N) in epilithic mosses collected from urban sites to rural sites along four directions at Guiyang area. Mosses C (34.47%-52.76%) decreased significantly with distance from urban to rural area and strongly correlated with tissue N (0.85%-2.97%), showing atmospheric N deposition has positive effect on C assimilation of epilithic mosses, higher atmospheric N/NHx deposition at urban area has improved the photosynthesis and C fixation of mosses near urban, which also caused greater 13C discrimination for urban mosses. Mosses delta 13C signatures (-30.69% per hundred - -26.96% per hundred) got less negative with distance from urban to rural area, which was also related to the anthropogenic CO2 emissions in the city, and these 12C-enriched CO2 sources would lead to more negative mosses delta 13C through enhancing the atmospheric CO2 concentration in urban area. Moreover, according to the characteristics of mosses C and delta 13C variations with distance, it is estimated that the influences of urban anthropogenic CO2 sources on plants was mainly within 20 km from city center. This study mainly focused on the factors regulating tissue C and delta 13C of mosses in city area and the interaction between C and N in mosses, the responses of mosses C and delta 13C to urban CO2 emission and atmospheric N deposition have been revealed, which could provide new geochemical evidences for the control of city atmospheric pollution and the protection of ecosystems around city.

Download full-text PDF

Source

Publication Analysis

Top Keywords

delta 13c
28
mosses delta
16
mosses
12
epilithic mosses
12
anthropogenic co2
12
urban
9
13c
8
distance urban
8
urban rural
8
rural area
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!