Alginate-chitosan-alginate (ACA) microcapsules have been developed as a device for the transplantation of living cells. However, protein adsorption onto the surface of microcapsules immediately upon their implantation decides their ultimate biocompatibility. In this work, the chemical composition of the ACA membranes was determined using X-ray photoelectron spectroscopy (XPS). The surface wettability and charge were determined by contact angle and zeta potential measurements, respectively. Then, the effects of surface wettability and charge on bovine fibrinogen (Fgn) and gamma globulin (IgG) adsorption onto ACA microcapsules were evaluated. The results showed that ACA microcapsules had a hydrophilic membrane. So, the surface wettability of ACA microcapsules had little effect on protein adsorption. There was a negative zeta potential of ACA microcapsules which varies with the viscosity or G content of alginate used, indicating a varying degree of net negatively charged groups on the surface of ACA microcapsules. The amount of adsorbed protein increased with increasing of positive charge. Furthermore, the interaction between proteins and ACA microcapsules is dominated by electrostatic repulsion at pH 7.4 and that is of electrostatic attraction at pH 6.0. This work could help to explain the bioincompatibility of ACA microcapsules and will play an important role in the optimization of the microcapsule design.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32437DOI Listing

Publication Analysis

Top Keywords

aca microcapsules
32
surface wettability
16
wettability charge
12
protein adsorption
12
aca
9
microcapsules
9
zeta potential
8
surface
6
charge
4
protein
4

Similar Publications

Injectable calcium phosphate cement integrated with BMSCs-encapsulated microcapsules for bone tissue regeneration.

Biomed Mater

October 2024

Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China.

Injectable calcium phosphate cement (CPC) offers significant benefits for the minimally invasive repair of irregular bone defects. However, the main limitations of CPC, including its deficiency in osteogenic properties and insufficient large porosity, require further investigation and resolution. In this study, alginate-chitosan-alginate (ACA) microcapsules were used to encapsulate and deliver rat bone mesenchymal stem cells (rBMSCs) into CPC paste, while a porous CPC scaffold was established to support cell growth.

View Article and Find Full Text PDF

Excessive posttraumatic scarring in orthopedic tissues, such as joint capsules, ligaments, tendons, muscles, and peripheral nerves, presents a significant medical problem, resulting in pain, restricted joint mobility, and impaired musculoskeletal function. Current treatments for excessive scarring are often ineffective and require the surgical removal of fibrotic tissue, which can aggravate the problem. The primary component of orthopedic scars is collagen I-rich fibrils.

View Article and Find Full Text PDF

Improving rhamnolipids production using fermentation-foam fractionation coupling system: cell immobilization and waste frying oil emulsion.

Bioprocess Biosyst Eng

August 2023

School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, DingziGu, Hongqiao District, Tianjin, 300130, China.

This work focused on the development of an inexpensive carbon source and the improvement of the fermentation-foam fractionation coupling system. The rhamnolipids production capacity of waste frying oil (WFO) was evaluated. The suitable bacterial cultivation of seed liquid and the addition amount of WFO was 16 h and 2% (v/v), respectively.

View Article and Find Full Text PDF

Calcium phosphate bone cement (CPC) serves as an excellent scaffold material for bone tissue engineering owing to its good biocompatibility, injectability, self-setting property and three-dimensional porous structure. However, its clinical use is limited due to the cytotoxic effect of its setting reaction on cells and difficulties in degradation into bone. In this study, bone marrow mesenchymal stem cells (BMSCs) were encapsulated in alginate chitosan alginate (ACA) microcapsules and compounded with calcium phosphate bone cement.

View Article and Find Full Text PDF

Ultraviolet radiation, oxidation, temperature, moisture, and traffic loads produce degradation and brittleness in the asphalt pavement. Microcracks develop into macrocracks, which eventually lead to pavement failure. Although asphalt has an inherent capacity for self-healing, it is constricted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!