In search of more potent anticancer agents, 15 nitric oxide (NO)-donating thalidomide analogues, 6a, 6b, 8a-8e, and 13a-13h, were designed and synthesized. Cytotoxicity of these compounds was evaluated in vitro against three human tumor cell lines (HepG2, A549, and PC-3). The results indicated that 13a-13d exhibited notable anticancer activities comparable to or stronger than that of 5-fluorouracil (5-FU). Structure-activity relationships were also discussed, based on the experimental data obtained. Generally, the cytotoxic activity of target compounds is closely related to the type of NO donors, and the length of the spacers connecting to NO donors also appears important for the bioactivities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.200800014 | DOI Listing |
J Med Chem
January 2025
Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.
PROTACs usually occupy physicochemical space outside the one defined by classical drug-like molecules, which often presents considerable challenges in their optimization and development for oral administration. We have previously reported phenyl glutarimide (PG)-based BET PROTAC SJ995973, with improved overall degradation and antiproliferative activities compared to its direct thalidomide-based analogue dBET1, but similarly poor pharmacokinetic profile. To further demonstrate the PG utility, we describe here optimization efforts that led to the discovery of an orally bioavailable BET-PROTAC SJ44236 (), and results of a comprehensive comparative study with analogues containing alternative CRBN-directing warheads.
View Article and Find Full Text PDFBackground: Psoriasis is a chronic, systemic, inflammatory skin disease, with increasing prevalence; however, few studies have reported real-world prescription patterns and healthcare burden.
Objectives: This retrospective, observational cohort study used statutory health insurance claims data (January 2014-December 2019) to estimate prevalence/incidence of moderate-to-severe psoriasis in Germany. Patient characteristics, treatment patterns/compliance, and healthcare resource utilization (HCRU)/costs were evaluated, focusing on apremilast and anti-interleukin (IL), and anti-tumor necrosis factor (TNF) biologics.
Pharmacol Res Perspect
February 2025
Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany.
Cachexia is a multifactorial metabolic syndrome characterized by weight and skeletal muscle loss caused by underlying illnesses such as cancer, heart failure, and renal failure. Inflammation, insulin resistance, increased muscle protein degradation, decreased food intake, and anorexia are the primary pathophysiological drivers of cachexia. Cachexia causes physical deterioration and functional impairment, loss of quality of life, lower response to active treatment, and ultimately morbidity and mortality, while the difficulties in tackling cachexia in its advanced phases and the heterogeneity of the syndrome among patients require an individualized and multidisciplinary approach from an early stage.
View Article and Find Full Text PDFLancet Haematol
January 2025
University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: In CARTITUDE-4, ciltacabtagene autoleucel (cilta-cel) significantly improved progression-free survival (primary endpoint; previously reported) versus standard of care in patients with relapsed, lenalidomide-refractory multiple myeloma. We report here patient-reported outcomes.
Methods: In the ongoing, phase 3, open-label CARTITUDE-4 study, patients were recruited from 81 sites in the USA, Europe, Asia, and Australia, and were randomly assigned 1:1 to cilta-cel (target, 0·75 × 10 CAR-T cells/kg) or standard of care (daratumumab, pomalidomide, and dexamethasone; pomalidomide, bortezomib, and dexamethasone).
Future Med Chem
January 2025
Department of Chemistry & Physics, Florida Gulf Coast University, Fort Myers, FL, USA.
Isoindoline-1,3-dione, also referred as phthalimide, has gained recognition as promising pharmacophore due to the documented biological activities of its derivatives. Phthalimides are a family of synthetic molecules that exhibit notable bioactivity across various fields, particularly as anticancer and anti-inflammatory agents. This review focuses on syntheses and anti-inflammatory studies of the reported phthalimide derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!