Iodide uptake in the thyroid and breast is mediated by the sodium/iodide symporter (NIS). NIS activation is used for radioiodide imaging and therapeutic ablation of thyroid carcinoma. NIS is expressed in >70% of breast cancers but at a level insufficient for radioiodine treatment. All-trans retinoic acid (tRA) induces NIS gene expression and functional iodide uptake in human breast cancer cell lines and mouse breast cancer models. tRA usually regulates gene expression by direct interaction of RA receptor (RAR) with a target gene, but it can also act through nongenomic pathways. We report a direct influence of tRA treatment on the phosphoinositide 3-kinase (PI3K) signal transduction pathway that mediates tRA-induced NIS expression in MCF-7 breast cancer cells. MCF-7 cells express all three RAR isoforms, alpha, beta, and gamma, and RXRalpha. We previously identified RARbeta and RXRalpha as important for NIS induction by tRA. Treatment with LY294002, the PI3K inhibitor, or p85alpha knockdown with siRNA abolished tRA-induced NIS expression. Immunoprecipitation experiments and glutathione S-transferase pull-down assay showed a direct interaction between RARbeta2, RXRalpha, and p85alpha. RA also induced rapid activation of Akt in MCF-7 cells. Treatment with an Akt inhibitor or Akt knockdown with siRNA reduced NIS expression. These findings indicate that RA induction of NIS in MCF-7 cells is mediated by rapid activation of the PI3K pathway and involves direct interaction with RAR and retinoid X receptor. Defining these mechanisms should lead to methods to further enhance NIS expression, as well as retinoid targets that influence growth and differentiation of breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852426PMC
http://dx.doi.org/10.1158/0008-5472.CAN-08-3234DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
nis expression
16
direct interaction
12
mcf-7 cells
12
nis
10
retinoic acid
8
sodium/iodide symporter
8
mcf-7 breast
8
cancer cells
8
iodide uptake
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!