Thyroid tumors arising from the follicular cells often harbor mutations leading to the constitutive activation of the PI3K and Ras signaling cascades. However, it is still unclear what their respective contribution to the neoplastic process is, as well as to what extent they interact. We have used mice harboring a Kras oncogenic mutation and a Pten deletion targeted to the thyroid epithelium to address in vivo these questions. Here, we show that although each of these two pathways, alone, is unable to transform thyroid follicular cells, their simultaneous activation is highly oncogenic, leading to invasive and metastatic follicular carcinomas. In particular, phosphatidylinositol-3-kinase (PI3K) activation suppressed Kras-initiated feedback signals that uncouple mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) and ERK activation, thus stunting MAPK activity; in addition, PI3K and Kras cooperated to drastically up-regulate cyclin D1 mRNA levels. Finally, combined pharmacologic inhibition of PI3K and MAPK completely inhibited the growth of double-mutant cancer cell lines, providing a compelling rationale for the dual targeting of these pathways in thyroid cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669852PMC
http://dx.doi.org/10.1158/0008-5472.CAN-09-0024DOI Listing

Publication Analysis

Top Keywords

erk activation
8
transform thyroid
8
follicular cells
8
pi3k
5
activation
5
thyroid
5
oncogenic kras
4
kras requires
4
requires simultaneous
4
simultaneous pi3k
4

Similar Publications

Duhuo Jisheng Mixture attenuates neuropathic pain by inhibiting S1PR1/P2YR pathway after Chronic Constriction Injury in mice.

Phytomedicine

January 2025

Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Changle West Street 15, Xi'an, Shaanxi, 710032, China. Electronic address:

Background: The pathogenesis of neuropathic pain is complex and lacks effective clinical treatment strategies. Medical plants and herbal extracts from traditional Chinese medicine with multi-target comprehensive effects have attracted great attention from scientists.

Purpose: To investigate the pharmacological active components and mechanism underlying the anti-neuralgia effect of classic analgesic formulas Duhuo Jisheng Mixture (DJM).

View Article and Find Full Text PDF

Gedunin Mitigates -Induced Skin Inflammation by Inhibiting the NF-κB Pathway.

Pharmaceuticals (Basel)

January 2025

Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.

: , a bacterium residing in hair follicles, triggers acne by inducing monocyte-mediated inflammatory cytokine production. Gedunin, a limonoid derived from (commonly known as neem), is renowned for its antifungal, antimalarial, anticancer, anti-inflammatory, and neuroprotective effects. However, its role in mitigating -induced skin inflammation remains unexplored.

View Article and Find Full Text PDF

Class IA PI3K p110δ and p110α subunits participate in TCR and costimulatory receptor signals involved in T cell-mediated immunity, but the role of p110α is not completely understood. Here, we analyzed a mouse model of the Cre-dependent functional inactivation of p110α (kinase dead) in T lymphocytes (p110αKD-T, KD). KD mice showed increased cellularity in thymus and spleen and altered T cell differentiation with increased number of CD4CD8 DP thymocytes, enhanced proportion of CD4 SP lymphocytes linked to altered apoptosis, lower Treg cells, and increased AKT and ERK phosphorylation in activated thymocytes.

View Article and Find Full Text PDF

Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14-17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing tumor growth, angiogenesis, and metastasis. Targeting inflammatory pathways within cancer cells may thus represent a promising strategy for inhibiting NSCLC metastasis.

View Article and Find Full Text PDF

The complex signaling network within the breast tumor microenvironment is crucial for its growth, metastasis, angiogenesis, therapy escape, stem cell maintenance, and immunomodulation. An array of secretory factors and their receptors activate downstream signaling cascades regulating breast cancer progression and metastasis. Among various signaling pathways, the EGFR, ER, Notch, and Hedgehog signaling pathways have recently been identified as crucial in terms of breast cancer proliferation, survival, differentiation, maintenance of CSCs, and therapy failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!