Purpose: We have previously mapped a major susceptibility locus influencing familial lung cancer risk to chromosome 6q23-25. However, the causal gene at this locus remains undetermined. In this study, we further refined this locus to identify a single candidate gene, by fine mapping using microsatellite markers and association studies using high-density single nucleotide polymorphisms (SNP).
Experimental Design: Six multigenerational families with five or more affected members were chosen for fine-mapping the 6q linkage region using microsatellite markers. For association mapping, we genotyped 24 6q-linked cases and 72 unrelated noncancer controls from the Genetic Epidemiology of Lung Cancer Consortium resources using the Affymetrix 500K chipset. Significant associations were validated in two independent familial lung cancer populations: 226 familial lung cases and 313 controls from the Genetic Epidemiology of Lung Cancer Consortium, and 154 familial cases and 325 controls from Mayo Clinic. Each familial case was chosen from one high-risk lung cancer family that has three or more affected members.
Results: A region-wide scan across 6q23-25 found significant association between lung cancer susceptibility and three single nucleotide polymorphisms in the first intron of the RGS17 gene. This association was further confirmed in two independent familial lung cancer populations. By quantitative real-time PCR analysis of matched tumor and normal human tissues, we found that RGS17 transcript accumulation is highly and consistently increased in sporadic lung cancers. Human lung tumor cell proliferation and tumorigenesis in nude mice are inhibited upon knockdown of RGS17 levels.
Conclusion: RGS17 is a major candidate for the familial lung cancer susceptibility locus on chromosome 6q23-25.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746091 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-08-2335 | DOI Listing |
Sci Rep
December 2024
Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA.
Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!