Multi-layered oriented polyfluorene films.

J Phys Chem B

Department of Computer Science, Kyushu Institute of Technology (KIT), 680-4 Kawazu, Iizuka 820-8502, Japan.

Published: April 2009

Multilayered oriented polyfluorene (PF) films were obtained by applying thermal treatment procedure to a multilayered PF film constructed with fluorene derivatives layer formed on top of a highly oriented friction-transferred crystalline poly(9,9-dioctylfluorene) (PF8) film. The orientations in the multilayered PF films were investigated by polarized photoluminescence (PL) spectroscopy and grazing incident X-ray diffraction (GIXD) analysis. The results of the multilayered PF film constructed with spin-coated PF8 on friction-transferred PF8 indicate that the rearrangement of the upper PF8 layer is induced from the orientation of lower PF8 layer by thermal treatment at the nematic phase temperature. Polarized green emission from the multilayered oriented PF film was demonstrated using the blend of PF8 and poly(9,9-dioctylfluorene-co-benzothiadiazol) (F8BT) as green light emitter for upper layer. By this method, the polarized emission color can be tuned using polymer blends for upper layer similar to the liquid-crystalline polymer arrangement without using different materials as an underlying layer such as the rubbed polyimide.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp808929bDOI Listing

Publication Analysis

Top Keywords

oriented polyfluorene
8
polyfluorene films
8
multilayered oriented
8
thermal treatment
8
multilayered film
8
film constructed
8
pf8 layer
8
upper layer
8
layer
6
pf8
6

Similar Publications

We explored the possibility of nanoscale mechanical manipulation and control of photophysical properties of conjugated polymer nanoparticles. We carried out a simultaneous atomic force microscopy (AFM) and fluorescence microspectroscopy study on single nanoparticles of the conjugated polymer poly(9,9-dioctylfluorene). The nanoparticles are prepared by a reprecipitation method and have an average height of 27 nm, and their emission is dominated by the well-ordered β-phase conformation.

View Article and Find Full Text PDF

Photophysical and Fluorescence Anisotropic Behavior of Polyfluorene β-Conformation Films.

J Phys Chem Lett

January 2018

Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

We demonstrate a systematic visualization of the unique photophysical and fluorescence anisotropic properties of polyfluorene coplanar conformation (β-conformation) using time-resolved scanning confocal fluorescence imaging (FLIM) and fluorescence anisotropy imaging microscopy (FAIM) measurements. We observe inhomogeneous morphologies and fluorescence decay profiles at various micrometer-sized regions within all types of polyfluorene β-conformational spin-coated films. Poly(9,9-dioctylfluorene-2,7-diyl) (PFO) and poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF) β-domains both have shorter lifetime than those of the glassy conformation for the longer effective conjugated length and rigid chain structures.

View Article and Find Full Text PDF

Understanding geometrical and size dependencies of through-space charge delocalization in multichromophoric systems is critical to model electron transfer and transport in materials and biomolecules. In this work, we examine the size evolution of hole delocalization in van der Waals clusters of fluorene (i.e.

View Article and Find Full Text PDF

Self-Organized Micro-Spiral of Single-Walled Carbon Nanotubes.

Sci Rep

July 2017

Department of Chemical Engineering & Materials Science, Doshisha University, Kyoto, 610-0321, Japan.

Single-walled carbon nanotubes (SWCNTs) are reported to spontaneously align in a rotational pattern by drying a liquid droplet of toluene containing polyfluorene as a dispersant. By situating a droplet of an SWCNT solution around a glass bead, spiral patterns are generated. The parallel alignment of SWCNTs along one stripe of such a pattern is confirmed using scanning electron microscopy and polarized optical microscopy.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) have potential to act as light-harvesting elements in thin film photovoltaic devices, but performance is in part limited by the efficiency of exciton diffusion processes within the films. Factors contributing to exciton transport can include film morphology encompassing nanotube orientation, connectivity, and interaction geometry. Such factors are often defined by nanotube surface structures that are not yet well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!