Here, we present a new automated instrument for semicontinuous gradient measurements of water-soluble reactive trace gas species (NH3, HNO3, HONO, HCl, and SO2) and their related aerosol compounds (NH4+, NO3-, Cl-, SO4(2-)). Gas and aerosol samples are collected simultaneously at two heights using rotating wet-annular denuders and steam-jet aerosol collectors, respectively. Online (real-time) analysis using ion chromatography (IC) for anions and flow injection analysis (FIA) for NH4+ and NH3 provide a half-hourly averaged gas and aerosol gradients within each hour. Through the use of syringe pumps, IC preconcentration columns, and high-quality purified water, the system achieves detection limits (3sigma-definition) under field conditions of typically: 136/207,135/114, 29/ 22,119/92, and 189/159 ng m(-3) for NH3/NH4+, HNO3/NO3-, HONO/ NO2-, HCl/Cl- and SO2/SO4(2-), respectively. The instrument demonstrates very good linearity and accuracy for liquid and selected gas phase calibrations over typical ambient concentration ranges. As shown by examples from field experiments, the instrument provides sufficient precision (3-9%), even at low ambient concentrations, to resolve vertical gradients and calculate surface-atmosphere exchange fluxes undertypical meteorological conditions of the atmospheric surface layer using the aerodynamic gradient technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es8019403 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, Institut Pierre-Simon Laplace, Université Paris Sciences et Lettres, Paris 75005, France.
The insulative properties of soil organic carbon (SOC) and surface organic layers (moss, lichens, litter) regulate surface-atmosphere energy exchanges in the Arctic through a coupling with soil temperatures. However, a physical description of this process is lacking in many climate models, potentially biasing their high-latitude climate predictions. Using a coupled surface-atmosphere model, we identified a strong feedback loop between soil insulation, surface air temperature, and snowfall.
View Article and Find Full Text PDFSci Total Environ
November 2024
Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany.
Forests globally are experiencing severe droughts, leading to significant reductions in growth, crown dieback and even tree mortality. The ability of forest ecosystems to acclimate to prolonged and repeated droughts is critical for their survival with ongoing climate change. In a five-year throughfall exclusion experiment, we investigated the long-term physiological and morphological acclimation of mature Norway spruce (Picea abies [L.
View Article and Find Full Text PDFSci Data
June 2024
Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Air temperature (Ta), snow depth (Sd), and soil temperature (Tg) are crucial variables for studying the above- and below-ground thermal conditions, especially in high latitudes. However, in-situ observations are frequently sparse and inconsistent across various datasets, with a significant amount of missing data. This study has assembled a comprehensive dataset of in-situ observations of Ta, Sd, and Tg for the Northern Hemisphere (higher than 30°N latitude), spanning 1960-2021.
View Article and Find Full Text PDFTree Physiol
February 2024
Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany.
Stem respiration (RS) substantially contributes to the return of photo assimilated carbon to the atmosphere and, thus, to the tree and ecosystem carbon balance. Stem CO2 efflux (ECO2) is often used as a proxy for RS. However, this metric has often been challenged because of the uncertain origin of CO2 emitted from the stem due to post-respiratory processes.
View Article and Find Full Text PDFChemosphere
November 2023
Department of Environmental, Earth, And Atmospheric Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA; Division of Agriculture and Natural Resources, University of California, Davis, CA, 95618, USA.
Direct measurements of gaseous elemental mercury (GEM) exchanges over global ecosystems are challenging and require extensive and costly measurement systems. Here, we explore the use of atmospheric GEM concentration variability and passive samplers to assess underlying ecosystem GEM exchanges at two rural temperate forests in the northeastern United States. We find strong temporal alignments between atmospheric GEM concentration declines and ecosystem GEM deposition in spring at both forests, which followed patterns of CO and suggests that ambient air GEM concentration monitoring provides a proxy measurement to assess forest GEM sinks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!