The primary energy conversion steps of natural photosynthesis proceed via light-induced radical ion pairs as short-lived intermediates. Time-resolved electron paramagnetic resonance (EPR) experiments of photosynthetic reaction centers monitor the key charge separated state between the oxidized primary electron donor and reduced quinone acceptor, e.g., P(+)(865)Q(-)(A) of purple photosynthetic bacteria. The time-resolved EPR spectra of P(+)(865)Q(-)(A) are indicative of a spin-correlated radical pair that is created from the excited singlet state of P(865) in an ultra-fast photochemical reaction. Importantly, the spin-correlated radical pair nature of the charge separated state is a common feature of all photosynthetic reaction centers, which gives rise to several interesting spin phenomena such as quantum oscillations, observed at short delay times after optical excitation. In this review, we describe details of the quantum oscillation phenomenon and present a complete analysis of the data obtained from the charge separated state of purple bacteria, P(+)(865)Q(-)(A). The analysis and simulation of the quantum oscillations yield the three-dimensional structure of P(+)(865)Q(-)(A) in the photosynthetic membrane on a nanosecond time scale after light-induced charge separation. Comparison with crystallographic data reveals that the position of Q(-)(A) is essentially the same as in the X-ray structure. However, the head group of Q(-)(A) has undergone a 60° rotation in the ring plane relative to its orientation in the crystal structure. The results are discussed within the framework of the previously suggested conformational gating mechanism for electron transfer from Q(-)(A) to the secondary quinone acceptor Q(B).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11120-009-9419-1 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India.
This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc-air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Background: In Alzheimer's disease (AD), the spread of Tau proteopathic seeds across the cerebral cortex parallels the disease progression. Previously, it was shown that isolating high-molecular-weight (HMW) Tau species via size exclusion chromatography (SEC) from human brain lysate of AD patients resulted in the enrichment of Tau aggregation-prone species. However, whether the HMW Tau population contain a homogenous or heterogeneous mixture of Tau species is still unknown.
View Article and Find Full Text PDFDalton Trans
January 2025
College of Life Sciences, School of Chemical Engineering, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang 330022, China.
The photocatalytic conversion of CO and HO into useful chemicals or fuels over semiconductor photocatalysts is regarded as a promising technology to address the problems of global warming and energy exhaustion. However, inefficient photo-absorption and slow charge dynamics limit the CO photoreduction efficiency. Here, a ternary heterojunction photocatalyst, CuCl(OH)/In/InO (Cu H IO), with an intimate interface is obtained a hydrogen chemical reduction approach followed by hydrolysis reaction, where In species can be produced on the surface of InO from the hydrogen chemical reaction with a calcining temperature of over 500 °C.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia.
High-entropy alloy nanoparticles (HEA-NPs) exhibit favorable properties in catalytic processes, as their multi-metallic sites ensure both high intrinsic activity and atomic efficiency. However, controlled synthesis of uniform multi-metallic ensembles at the atomic level remains challenging. This study successfully loads HEA-NPs onto a nitrogen-doped carbon carrier (HEAs) and pioneers the application in peroxymonosulfate (PMS) activation to drive Fenton-like oxidation.
View Article and Find Full Text PDFNat Commun
January 2025
Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, China.
Photodynamic immunotherapy (PIT) has emerged as a promising approach for efficient eradication of primary tumors and inhibition of tumor metastasis. However, most of photosensitizers (PSs) for PIT exhibit notable oxygen dependence. Herein, a concept emphasizing on transition from molecular PSs into semiconductor-like photocatalysts is proposed, which converts the PSs from type II photoreaction to efficient type I photoreaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!