Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background, Aim, And Scope: In literature, the environmental applications of green rust (GR) have mainly been pointed out through the reduction of inorganic contaminants and the reductive dechlorination of chlorinated organics. However, reactions involving GR for the oxidation and mineralization of organic pollutants remain very scantly described. In this study, the ability of three synthetic Fe(II)-Fe(III) green rusts, GR(CO (3)(2-)), GR(SO(4)(2-)), and GR(Cl(-)), to promote Fenton-like reaction was examined by employing phenol as a model pollutant. Unlike the traditional Fenton's reagent (dissolved Fe(II) + H(2)O(2)), where the pH values have to be lowered to less than 4, the proposed reaction can effectively oxidize the organic molecules at neutral pH and could avoid the initial acidification which may be costly and destructive for the in situ remediation of contaminated groundwater and soils. The green rust reactivity towards the oxidative transformation of phenol was thoroughly evaluated by performing a large kinetic study, chemical analyses, and spectroscopic investigations.
Materials And Methods: The kinetics of phenol removal was studied at three initial phenol concentrations for three green rusts under similar conditions (pH = 7.1; 1 g L(-1) of GR; 30 mM H(2)O(2)) and reaction rates were calculated based on mass and surface area. The oxidation rate constants are compared with that of magnetite, a well-known mixed iron (II, III) oxide. The mineralization of phenol was investigated at various H(2)O(2) doses and GR concentrations. In order to describe the phenol transformation in GR/H(2)O(2) system, several investigations were performed including HPLC and ion exclusion chromatography analysis, TOC, dissolved iron, and H(2)O(2) concentration measurements. Finally, X-ray powder diffraction and Raman spectroscopy were used to identify the oxidation products of GRs.
Results And Discussion: In GR/H(2)O(2) system, the kinetics of phenol removal at neutral pH was very fast and independent of the initial phenol concentration. No aromatic intermediates were detected and final by-products are mainly of short chain organic acids (oxalic acid and formic acid). Green rusts exhibit different reactivity toward Fenton-like oxidation of phenol. Both on mass and surface area basis, the reactivity of Fe(II)-Fe(III) species toward the oxidation of phenol was highest for GR(Cl(-)), little less for GR(SO(4)(2-)) or GR(CO(3)(2-)), and even less for magnetite (Fe(3)O(4)). Phenol degradation pseudo-first order rate constants (k(surf)) values were found to be: 13 x 10(-4), 3.3 x 10(-4), 3.5 x 10(-4), and 0.4 x 10(-4) L m(-2) s(-1) for GR(Cl(-)), GR(SO(4)(2-)), GR(CO(3)(2-)), and Fe(3)O(4), respectively. The mineralization yield of phenol as well as the decomposition rate of H(2)O(2) was higher for GR(Cl(-)) than for GR(SO(4)(2-)) or GR(CO(3)(2-)), mainly due to the higher Fe(II) content of GR(Cl(-)). Both X-ray diffraction analysis and Raman spectroscopy showed that the oxidation of GR with H(2)O(2) may lead to feroxyhyte (delta-FeOOH), with possible formation of poorly crystallized goethite (alpha-FeOOH), depending on GR type.
Conclusions: This original work shows that the heterogeneous Fenton-like reaction using GR/H(2)O(2) is very effective toward degradation and mineralization of pollutants. In summary, this study has demonstrated that the green rust-promoted oxidation reaction could contribute to the transformation of water contaminants in the presence of H(2)O(2.)
Recommendations And Perspectives: These results could serve as the basis for the understanding of the transformation of organic pollutants in iron-rich soils in the presence of chemical oxidant (H(2)O(2)) or for the development of wastewater treatment process. However, some experimental parameters should be optimized for a high-scale application. Further work needs to be done for the reactive transport and transformation of organic compounds in a green rust-packed column. The reusability of GR in mineral-catalyzed reaction should be also investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-009-0148-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!