A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomass granulation in an aerobic:anaerobic-enhanced biological phosphorus removal process in a sequencing batch reactor with varying pH. | LitMetric

Long-term influences of different steady-state pH conditions on microbial community composition were determined by fluorescence in situ hybridization (FISH) in a laboratory scale reactor configured for enhanced biological phosphorus removal (EBPR). Chemical profiles were consistent with shifts in populations from polyphosphate-accumulating organisms (PAO) to glycogen-accumulating organisms (GAO) when pH fell from pH 7.5 to 7.0 and then to 6.5. While biomass was both dispersed and flocculated at pH 7.5, almost complete granulation occurred gradually after pH was dropped to 7.0, and these granules increased in size as the pH was reduced further to 6.5. Reverting back to pH 7.5 led to granule breakdown and corresponding increases in anaerobic phosphate release. Granules consisted almost entirely of Accumulibacter PAO cells, while putative GAO populations were always present in small numbers. Results suggest that low pH may contribute to granulation under these operational conditions. While chemical profiles suggested the PAO:GAO balance was changing as pH fell, FISH failed to reveal any marked corresponding increase in GAO abundances. Instead, TEM evidence suggested the Accumulibacter PAO phenotype was becoming more like that of a GAO. These data show how metabolically adaptable the Accumulibacter PAO can be under anaerobic:aerobic conditions in being able to cope with marked changes in plant conditions. They suggest that decreases in EBPR capacity may not necessarily reflect shifts in community composition, but in the existing population metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-009-0566-3DOI Listing

Publication Analysis

Top Keywords

accumulibacter pao
12
biological phosphorus
8
phosphorus removal
8
community composition
8
chemical profiles
8
biomass granulation
4
granulation aerobicanaerobic-enhanced
4
aerobicanaerobic-enhanced biological
4
removal process
4
process sequencing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!