The pathology of regulation.

Clin Lab Med

Department of Pathology, College of Medicine, Ohio State University, Columbus 43210.

Published: September 1991

Clinical pathology officially began when inquisitive physicians in the nineteenth century sought explanations for the diseases they observed in their patients. The increasing application of the basic sciences to patients required physicians to spend more time and energy in the laboratory than with their patients. Methodology followed new technologic innovations that the profession began to critically review in the late 1940s. Initially, government involvement in laboratories was minimal and supportive. The role of the government evolved over the last decades from a patron of learning to a purchaser of a regulated commodity and paralleled the changing role of the clinical laboratory from medical practice to big business.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pathology regulation
4
regulation clinical
4
clinical pathology
4
pathology officially
4
officially began
4
began inquisitive
4
inquisitive physicians
4
physicians nineteenth
4
nineteenth century
4
century sought
4

Similar Publications

Heteronemin suppresses EGF‑induced proliferation through the PI3K/PD‑L1 signaling pathways in cholangiocarcinoma.

Oncol Rep

March 2025

Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.

Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells.

View Article and Find Full Text PDF

Potential and challenges of utilizing exosomes in osteoarthritis therapy (Review).

Int J Mol Med

March 2025

Department of Joint Surgery, Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China.

Exosomes are integral to the pathophysiology of osteoarthritis (OA) due to their roles in mediating intercellular communication and regulating inflammatory processes. Exosomes are integral to the transport of bioactive molecules, such as proteins, lipids and nucleic acids, which can influence chondrocyte behavior and joint homeostasis. Given their properties of regeneration and ability to target damaged tissues, exosomes represent a promising therapeutic avenue for OA treatment.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is a type of head and neck cancer (HNC) with a high recurrence rate, which has been reported to be associated with the presence of cancer stem cells (CSCs). Tribbles pseudokinase 3 (TRIB3) is involved in intracellular signaling and the aim of the present study was to investigate the role of TRIB3 in the maintenance of CSCs. Analysis of The Cancer Genome Atlas database samples demonstrated a positive correlation between TRIB3 expression levels and shorter overall survival rates in patients with HNC.

View Article and Find Full Text PDF

New insights into the role of complement system in colorectal cancer (Review).

Mol Med Rep

March 2025

Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China.

Colorectal cancer (CRC) is one of the most common cancers worldwide. With the growing understanding of immune regulation in tumors, the complement system has been recognized as a key regulator of tumor immunity. Traditionally, the complement cascade, considered an evolutionarily conserved defense mechanism against invading pathogens, has been viewed as a crucial inhibitor of tumor progression.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!