The objectives of this study were to comparatively assess the magnitude and direction of forces and moments generated from different bracket systems, during the initial levelling and alignment stage of orthodontic treatment. Three types of brackets were used: Orthos2 (Ormco), Damon2 (Ormco), and In-Ovation R (GAC). The brackets were bonded on resin replicas models of a patient's crowded mandibular arch, and a 0.014 inch Damon archform CuNiTi (Ormco) wire was inserted. The model was mounted on the Orthodontic Measurement and Simulation System (OMSS) and six static measurements were taken at the initial crowded state per bracket for the lateral incisor, canine, and first premolar. A total of 10 repetitions were performed for each measurement, with new brackets and archwires used for each trial. The forces and moments generated were registered directly on the OMSS software and were statistically analyzed using a one-way analysis of variance separately for each dental arch location and force component. Group differences were further analyzed with Tukey's post hoc comparisons test at the 0.05 significance level. The lingually inclined, crowded lateral incisor presented an extrusive and buccal movement and showed the lowest force in the vertical direction, whereas the self-ligating group of brackets generated the highest force in the buccolingual direction. The moments applied by the three bracket systems followed the general trend shown for forces; in the vertical axis, the self-ligating brackets exerted lower forces than their conventional counterpart. This was modified in the buccolingual direction where, in most instances, the self-ligating appliances applied higher moments compared with the conventional bracket. In most cases, the magnitude of forces and moments ranged between 30-70 cN and 2-6 N mm, respectively. However, maximum forces and moments developed at the lateral incisor were almost four times higher than the average.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ejo/cjn107DOI Listing

Publication Analysis

Top Keywords

forces moments
16
lateral incisor
12
moments generated
8
bracket systems
8
buccolingual direction
8
forces
7
brackets
6
moments
6
comparative assessment
4
assessment forces
4

Similar Publications

Musculoskeletal modeling based on inverse dynamics provides a cost-effective non-invasive means for calculating intersegmental joint reaction forces and moments, solely relying on kinematic data, easily obtained from smart wearables. On the other hand, the accuracy and precision of such models strongly hinge upon the selected scaling methodology tailored to subject-specific data. This study investigates the impact of upper body mass distribution on internal and external kinetics computed using a comprehensive musculoskeletal model during level walking in both normal weight and obese individuals.

View Article and Find Full Text PDF

: The impact of shoe stiffness on running biomechanics is well-documented, while the specific effect on the performance of biomechanically distinct groups such as novice runners and experienced runners is still largely unexplored. The study aimed to evaluate the biomechanical effect of different shoe longitudinal bending stiffness on the lower limb during running in novice runners and experienced runners. : Twelve experienced runners and ten novice runners ran at a speed of 4.

View Article and Find Full Text PDF

The real rotational capacity of the human joints - the muscular and gravitational torques and the foot as a platform.

Acta Bioeng Biomech

September 2024

Jagiellonian University Medical College, Faculty of Medicine, Department of Bioinformatics and Telemedicine, Kraków, Poland.

The purpose was to answer what is the relationship between torques acting on the human body, how does the triceps calf muscle balance the weight of a tilted body and what is the foot's role in the titling body? Two research models were developed. Model 1 - the one-sided lever system consists of a flat bar with, an axis of rotation, used to determine the weight and torque at a given point on it. Model 2 - the two-sided lever system consists of a flat bar imitating a tilted body counteracted by the Achilles tendon, and a platform imitating a foot.

View Article and Find Full Text PDF

Amino acid crystals have emerged as promising piezoelectric materials for biodegradable and biocompatible sensors; however, their relatively low piezoelectric coefficients constrain practical applications. Here, we introduce a fluoro-substitution strategy to overcome this limitation and enhance the piezoelectric performance of amino acid crystals. Specifically, we substituted hydrogen atoms on the aromatic rings of L-tryptophan, L-phenylalanine, and N-Cbz-L-phenylalanine with fluorine, resulting in significantly elevated piezoelectric coefficients.

View Article and Find Full Text PDF

Shear wave elastography reveals passive and active mechanics of triceps surae muscles in vivo: From shear modulus-ankle angle to stress-strain characteristics.

J Appl Physiol (1985)

January 2025

Experimental Biomechanics Group, Institute of Structural Mechanics and Dynamics in Aerospace Engineering, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Germany.

Characterizing individual muscle behavior is crucial for understanding joint function and adaptations to exercise, diseases, or aging. Shear wave elastography (SWE) is a promising tool for measuring the intrinsic material properties of muscle. This study assessed the passive and active shear modulus of the triceps surae muscle group in 14 volunteers (7 females, 25.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!