An explicit numerical model for the charge balancing ion transfer across monopolar ion exchange membranes under conditions of bioelectrochemical systems is presented. Diffusion and migration equations have been solved according to the Nernst-Planck Equation and the resulting ion concentrations, pH values and the resistance values of the membrane for different conditions were computed. The modeling results underline the principle limitations of the application of ion exchange membranes in biological fuel cells and electrolyzers, caused by the inherent occurrence of a pH-gradient between anode and cathode compartment, and an increased ohmic membrane resistance at decreasing electrolyte concentrations. Finally, the physical and numerical limitations of the model are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2009.03.001 | DOI Listing |
J AOAC Int
January 2025
Thermo Fisher Scientific, 1214 Oakmead Parkway, Sunnyvale, CA, USA 94085.
Background: Per- and polyfluoroalkyl substances (PFAS) comprise thousands of fluorinated chemicals. They are of growing concern because many PFAS compounds are persistent and toxic. Food contact materials (FCM) containing PFAS pose multiple exposure pathways to humans, prompting twelve states to enact laws banning FCM with PFAS levels exceeding 100 ppm of TOF.
View Article and Find Full Text PDFBiodegradation
January 2025
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia.
Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluoride compounds, widely used in industries since the 1950s for their hydrophobic properties. PFAS contamination of soil and water poses significant environmental and public health risks due to their persistence, chemical stability, and resistance to degradation. The Chemical Abstracts Service catalogs approximately 4300 PFAS globally.
View Article and Find Full Text PDFElectrophoresis
January 2025
Pfizer, Analytical Research and Development, Chesterfield, Missouri, USA.
A significant limitation of imaged capillary electric focusing (icIEF) is the inability to identify and characterize specific species in the electropherogram. This has led to the development of complementary ion-exchange chromatography (IEX)-based methods that are amenable to either fraction collection and subsequent characterization or online IEX coupled to mass spectrometry. To overcome this limitation while maintaining the use of icIEF, novel approaches, including an icIEF separation and fractionation technology (MauriceFlex, ProteinSimple), have been developed.
View Article and Find Full Text PDFRSC Adv
January 2025
Electronic Material Research Center, Northwest Institute for Nonferrous Metal Research Xi'an 710016 China.
Potassium is a harmful impurity in the rhenium sinter, which adversely affects its mechanical properties by significantly reducing the density of sintered rhenium. Cationic resin is a promising material for potassium removal. In this study, the strong acid cationic exchange resin C160H was pretreated with an HNO solution to enhance its performance in potassium removal.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
Ion exchange membranes (IEMs) enable fast and selective ion transport and the partition of electrode reactions, playing an important role in the fields of precise ion separation, renewable energy storage and conversion, and clean energy production. Traditional IEMs form ion channels at the nanometer-scale via the assembly of flexible polymeric chains, which are trapped in the permeability/conductivity and selectivity trade-off dilemma due to a high swelling propensity. New-generation IEMs have shown great potential to break this intrinsic limitation by using microporous framework channels for ion transport under a confinement regime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!