AI Article Synopsis

  • Certain strains of Bacillus sphaericus produce a binary toxin effective against mosquito larvae that can transmit diseases like filariasis and malaria.
  • Researchers cloned the binA gene from a local strain known for its toxicity into E. coli, leading to the purification of BinA protein, which showed varying toxic activity.
  • The study successfully estimated the toxicity of purified BinA, indicating its potential for developing better bacterial insecticides for mosquito control.

Article Abstract

Certain strains of Bacillus sphaericus produce a highly toxic mosquito-larvicidal binary toxin during sporulation. The binary toxin is composed of toxic BinA (41.9kDa) and receptor binding BinB (51.4kDa) polypeptides and is active against vectors of filariasis, encephalitis and malaria. The toxin has been tested with limited use for the control of vector mosquitoes for more than two decades. The binA gene from a local ISPC-8 strain of B. sphaericus that is highly toxic to Culex and Anopheles mosquito species was cloned into pET16b and expressed in Escherichia coli. The purified BinA protein differs by one amino acid (R197M) from BinA of the highest toxicity strains 1593/2362/C3-41. Majority of the expressed protein was observed in inclusion bodies. BinA inclusions alone from E. coli did not show toxic activity, like reported previously. However, the active form of BinA could be purified to homogeneity from the soluble fraction of E. coli cell lysate, grown at reduced temperature after isopropyl beta-d-thiogalactopyranoside induction. The purified BinA protein with and without poly-histidine tag showed LC(50) dose of 82.3 and 66.9ngml(-1), respectively, at 48h against Culex quinquefasciatus larvae. The secondary structure of BinA is expected to be mainly beta strands as estimated using far-UV circular dichroism. The estimates matched well with the secondary structure predictions using amino acid sequence. This is the first report of large-scale purification and accurate toxicity estimation of soluble B. sphaericus BinA. This can help in design and synthesis of improved bacterial insecticide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jip.2009.03.005DOI Listing

Publication Analysis

Top Keywords

bina protein
12
bina
10
bacillus sphaericus
8
sphaericus bina
8
highly toxic
8
binary toxin
8
purified bina
8
amino acid
8
secondary structure
8
purification characterization
4

Similar Publications

Retinal rods and cones underlie scotopic and photopic vision, respectively. Their pigments exhibit spontaneous isomerizations (quantal noise) in darkness due to intrinsic thermal energy. This quantal noise, albeit exceedingly low in rods, dictates the light threshold for scotopic vision.

View Article and Find Full Text PDF

Background: Rice is subjected to various environmental stresses, resulting in significant production losses. Abiotic stresses, particularly drought and salinity, are the leading causes of plant damage worldwide. The High-affinity Potassium Transporter (HKT) gene family plays an important role in enhancing crop stress tolerance by regulating physiological and enzymatic functions.

View Article and Find Full Text PDF

In this work, we report the construction of four bacterial luciferase-based promoter probe vectors with an expanded set of selectable markers, designed to facilitate their use in antibiotic-resistant bacteria. These vectors contain the low-copy-number, broad-host-range pBBR origin of replication and an origin of transfer, allowing efficient conjugative transformation into various bacterial genera. The broad host range origin also enables their use in bacterial strains that harbor other plasmids, as the pBBR origin is compatible with a wide variety of other plasmid replication systems.

View Article and Find Full Text PDF

Eustigmatophyte model of red-shifted chlorophyll a absorption in light-harvesting complexes.

Commun Biol

October 2024

Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic.

Photosynthetic organisms harvest light for energy. Some eukaryotic algae have specialized in harvesting far-red light by tuning chlorophyll a absorption through a mechanism still to be elucidated. Here, we combined optically detected magnetic resonance and pulsed electron paramagnetic resonance measurements on red-adapted light-harvesting complexes, rVCP, isolated from the freshwater eustigmatophyte alga Trachydiscus minutus to identify the location of the pigments responsible for this remarkable adaptation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!