Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes.

Genet Med

Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research. A. Lanari, University of Buenos Aires-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.

Published: May 2009

Purpose: We present an approach to prioritize single nucleotide polymorphisms for further follow-up in genome-wide association studies of type 2 diabetes.

Method: The proposed method combines both the use of open data access from two type 2 diabetes-genome-wide association studies (granted by the Diabetes Genetics Initiative and the Welcome Trust Case Control Consortium) and the comprehensive analysis of candidate regions generated by the freely accessible ENDEAVOUR software.

Results: The algorithm prioritized all genes of the whole genome in relation to type 2 diabetes. There were six of 1096 single nucleotide polymorphisms in five genes potentially associated with type 2 diabetes: tachykinin receptor 3 (rs1384401), anaplastic lymphoma receptor tyrosine kinase (rs4319896), calcium channel, voltage-dependent, L type, alpha 1D subunit (rs12487452), FOXO1A (rs10507486 and rs7323267), and v-akt murine thymoma viral oncogene homolog 3 (rs897959). We estimated the fixed effect and P values of each single nucleotide polymorphism in the combined dataset by Mantel-Haenszel meta-analysis and we observed significant P values for all single nucleotide polymorphisms except for rs897959 at v-akt murine thymoma viral oncogene homolog 3.

Conclusion: The proposed strategy may be used as an alternative tool for optimizing the information of the nearly 500,000 gene variants in which markers with modest significant P value for disease association are currently disregarded. Additionally, the said single nucleotide polymorphisms may be incorporated into the replication of the multistage design involved in the genome-wide association studies.

Download full-text PDF

Source
http://dx.doi.org/10.1097/GIM.0b013e31819995caDOI Listing

Publication Analysis

Top Keywords

single nucleotide
20
association studies
16
nucleotide polymorphisms
16
type diabetes
12
associated type
8
genome-wide association
8
v-akt murine
8
murine thymoma
8
thymoma viral
8
viral oncogene
8

Similar Publications

Background Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects about a third of adults worldwide and is projected soon to be the leading cause of cirrhosis. It occurs when fat accumulates in hepatocytes and can progress to metabolic dysfunction-associated steatohepatitis (MASH), liver cirrhosis, and hepatocellular carcinoma. MASLD pathogenesis is believed to involve a combination of genetic and environmental risk factors.

View Article and Find Full Text PDF

This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.

View Article and Find Full Text PDF

In mammals, the four subunit isoforms HCN1-4 assemble to form functional homotetrameric and heterotetrameric hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels. Despite the outstanding relevance of HCN channels for organisms, including generating electrical rhythmicity in cardiac pacemaker cells and diverse types of brain neurons, key channel properties are still elusive. In particular, the unitary conductance, of HCN channels is highly controversial.

View Article and Find Full Text PDF

Background: Bipolar Disorder (BD) is a complex disease. It is heterogeneous, both at the phenotypic and genetic level, although the extent and impact of this heterogeneity is not fully understood. One way to assess this heterogeneity is to look for patterns in the subphenotype data.

View Article and Find Full Text PDF

The genetic architecture of resistance to flubendiamide insecticide in Helicoverpa armigera (Hübner).

PLoS One

January 2025

Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil.

Insecticide resistance is a major problem in food production, environmental sustainability, and human health. The cotton bollworm Helicoverpa armigera is a globally distributed crop pest affecting over 300 crop species. H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!