Cells exposed to genotoxic stress, such as ionizing radiation and DNA damaging reagents, either arrest the cell cycle to repair the genome, or undergo apoptosis, depending on the extent of the DNA damage. DNA damage also has been implicated in various differentiation processes. It has been reported that gamma-ray exposure or treatment with DNA-damaging agents could induce myogenic differentiation in Drosophila Schneider cells. However, the mechanism underlying this process has been poorly understood. In this study, exposure of Schneider cells to X-rays or energetic carbon ion beams caused increase of TUNEL-positive cells and conversion of round-shaped cells to elongated cells. Both upregulation of genes related to myogenesis and increase of myosin indicate that the radiation-induced morphological changes of Schneider cells were accompanied with myogenic differentiation. Because the intracellular ceramide was increased in Schneider cells after exposure to X-ray, we examined whether exogenous ceramide could mimic radiation-induced myogenic differentiation. Addition of membrane-permeable C(2)-ceramide to Schneider cells increased apoptosis and expression of myogenic genes. These results suggest that ceramide plays important roles in both apoptosis and the radiation-induced myogenic differentiation process.

Download full-text PDF

Source
http://dx.doi.org/10.1269/jrr.08122DOI Listing

Publication Analysis

Top Keywords

schneider cells
24
myogenic differentiation
20
cells
10
drosophila schneider
8
dna damage
8
radiation-induced myogenic
8
myogenic
6
differentiation
6
schneider
6
ceramide
4

Similar Publications

Fuel for thought: targeting metabolism in lung cancer.

Transl Lung Cancer Res

December 2024

Department of Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA, USA.

For over a century, we have appreciated that the biochemical processes through which micro- and macronutrients are anabolized and catabolized-collectively referred to as "cellular metabolism"-are reprogrammed in malignancies. Cancer cells in lung tumors rewire pathways of nutrient acquisition and metabolism to meet the bioenergetic demands for unchecked proliferation. Advances in precision medicine have ushered in routine genotyping of patient lung tumors, enabling a deeper understanding of the contribution of altered metabolism to tumor biology and patient outcomes.

View Article and Find Full Text PDF

Targeting MYCN upregulates L1CAM tumor antigen in MYCN-dysregulated neuroblastoma to increase CAR T cell efficacy.

Pharmacol Res

January 2025

Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, 13353 Berlin, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Virchowweg 23, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany. Electronic address:

Current treatment protocols have limited success against MYCN-amplified neuroblastoma. Adoptive T cell therapy presents an innovative strategy to improve cure rates. However, L1CAM-targeting CAR T cells achieved only limited response against refractory/relapsed neuroblastoma so far.

View Article and Find Full Text PDF

This tutorial focuses on opportunities and challenges associated with using six large, publicly accessible spatial databases published during the last decade by US federal agencies. These databases provide opportunities for researchers to risk-inform policy by comparing community asset, demographic, economic, and social data, along with anthropogenic and natural hazard data at multiple geographic scales. The opportunities for data analysis come with challenges, including data accuracy, variations in the shape and size of data cells, spatial autocorrelation, and other issues endemic to spatial datasets.

View Article and Find Full Text PDF

IRE1 is a Promising Therapeutic Target in Pancreatic Cancer.

Am J Physiol Cell Physiol

January 2025

Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany.

Pancreatic cancer (PC) is one of the most aggressive malignancies, characterized by an increasing incidence and unfavorable prognosis. Despite recent advances, surgical resection combined with chemotherapy remains the only potentially curative therapeutic option. Therefore, it is of paramount importance to identify novel therapeutic targets and develop effective treatment strategies.

View Article and Find Full Text PDF

Water-dispersible core/shell CuInZnSe/ZnS (CIZSe/ZnS) quantum dots (QDs) were efficiently synthesized under microwave irradiation using -acetylcysteine (NAC) and sodium citrate as capping agents. The photoluminescence (PL) emission of CIZSe/ZnS QDs can be tuned from 593 to 733 nm with varying the Zn : Cu molar ratio in the CIZSe core. CIZSe/ZnS QDs prepared with a Zn : Cu ratio of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!