A computational approach to the "optimal" screw axis location and orientation in the scaphoid bone.

J Hand Surg Am

Department of Orthopaedics, Bioengineering Laboratory, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA.

Published: April 2009

Purpose: The development of small cannulated screws permitted minimally invasive percutaneous fixation of acute scaphoid fractures. There are known mechanical advantages to increased screw length and central screw placement, as well as documented deleterious effects of screw malposition, including articular protrusion, proximal pole fracture, and nonunion. The purpose of this study was to compare 2 methods of calculating a screw axis accessible via a volar surgical approach.

Methods: To prevent screw protrusion through the surface of the scaphoid, we required the central screw axis to be contained completely within a "safe zone," defined as a 3-dimensional region located a fixed distance from the inner cortical surface. Safe zones were calculated based on computed tomography-generated models of the right scaphoid from 10 healthy subjects. Two methods for screw axis calculation were compared: (1) maximum screw length (MSL) within the safe zone and (2) a cylinder best-fit (CYL) to the safe zone. The volar approach was defined as percutaneous screw placement through the scaphoid tubercle without violation of the trapezium. Resultant screw axes were compared between the 2 methods for volar accessibility, screw length, and location of the screw axis.

Results: The MSL axes were completely accessible without violating the trapezium in all but 2 subjects. The average MSL axes were 11% longer than the CYL axes and passed significantly closer to the scaphoid tubercle than did the CYL axes (1.8 mm vs 6.4 mm). The MSL axes passed significantly farther (1.6 mm) from the bone centroid than did the CYL axes (0.4 mm). All 10 MSL axes were located in the central one-third of the proximal pole.

Conclusions: Without violation of the trapezium, MSL axis can be attained via the volar percutaneous approach to the scaphoid. Using this approach, the ideal starting point for maximal screw length was located 1.7 mm dorsal and 0.2 mm radial to the apex of the scaphoid tubercle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhsa.2009.01.011DOI Listing

Publication Analysis

Top Keywords

screw axis
16
screw length
16
msl axes
16
screw
14
scaphoid tubercle
12
cyl axes
12
scaphoid
8
central screw
8
screw placement
8
safe zone
8

Similar Publications

Background: This study aims to demonstrate the 3-dimensional pattern of the nutrient vessels of the triquetrum using micro-computed tomography and determine the safe region for screw applications to the bone.

Methods: Seven fresh frozen cadavers' ulnar and radial arteries were injected with Microfil MV-117. Triquetral bones were dissected and examined using micro-computed tomography.

View Article and Find Full Text PDF

Purpose: To describe a novel alternative technique for C2 fixation under the concept of atlantoaxial joint distraction and fusion with intra-articular Cages, and to report its preliminary clinical outcomes.

Methods: Eighteen patients with basilar invagination and atlantoaxial dislocation underwent atlantoaxial joint distraction and fusion with intra-articular Cages. All patients had hypoplasia of the C2 isthmus prohibiting insertion of the pedicle screw.

View Article and Find Full Text PDF

Some one-dimensional (1D) crystals containing a screw dislocation along their longer axis exhibit a helical twist due to lattice strain. These chiral structures have been thoroughly investigated by using transmission electron microscopy. However, whether two-dimensional (2D) crystals with a spiral surface pattern, presumably containing a screw dislocation, are structurally chiral remains unclear because their internal structures are not visible.

View Article and Find Full Text PDF

Injuries involving the Atlas (C1) and Axis (C2) vertebrae of the cervical spine present significant clinical challenges due to their complex anatomy and potential for severe neurological impairment. Traditional imaging methods often lack the detailed visualization required for precise surgical planning. This study aimed to develop high-resolution 3D models of the C1 and C2 vertebrae to perform a comprehensive morphometric analysis, identify gender differences, and assess bilateral symmetry to enhance surgical accuracy.

View Article and Find Full Text PDF

The number of revision anterior cruciate ligament reconstruction (RACLR) procedures is increasing in proportion to the increase in the number of anterior cruciate ligament reconstruction (ACLR) procedures. Although approximately 50-75% of these procedures can be performed in a single-stage procedure, not all of them can. The choice of graft may influence the results of RACLR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!