Background: DYT6 is a primary, early-onset torsion dystonia; however, unlike in DYT1 dystonia, the symptoms of DYT6 dystonia frequently involve the craniocervical region. Recently, two mutations in THAP1, the gene that encodes THAP (thanatos-associated protein) domain-containing apoptosis-associated protein 1 (THAP1), have been identified as a cause of DYT6 dystonia.
Methods: We screened THAP1 by sequence analysis and quantitative real-time polymerase chain reaction (PCR) in 160 white patients of European ancestry who had dystonia with an early age at onset (n=64), generalised dystonia (n=35), a positive family history of dystonia (n=56), or facial or laryngeal dystonia. Another 160 patients with dystonia were screened for reported and novel variants in THAP1. 280 neurologically healthy controls were screened for the newly identified and previously reported changes in THAP1 and these and an additional 75 controls were screened for a rare non-coding mutation.
Findings: We identified two mutations in THAP1 (388_389delTC and 474delA), respectively, in two (1%) German patients from the 160 patients with dystonia. Both mutation carriers had laryngeal dystonia that started in childhood and both went on to develop generalised dystonia. Thus, two of three patients with early-onset generalised dystonia with orobulbar involvement had mutations in THAP1. One of the identified patients with DYT6 dystonia had two family members with subtle motor signs who also carried the same mutation. A rare substitution in the 5'untranslated region (-236_235GA-->TT) was found in 20 of 320 patients and in seven of 355 controls (p=0.0054).
Interpretation: Although mutations in THAP1 might have only a minor role in patients with different, but mainly focal, forms of dystonia, they do seem to be associated with early-onset generalised dystonia with spasmodic dysphonia. This combination of symptoms might be a characteristic feature of DYT6 dystonia and could be useful in the differential diagnosis of DYT1, DYT4, DYT12, and DYT17 dystonia. In addition to the identified mutations, a rare non-coding substitution in THAP1 might increase the risk of dystonia.
Funding: Deutsche Forschungsgemeinschaft; Volkswagen Foundation; Dystonia Medical Research Foundation; University of Lübeck.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1474-4422(09)70083-3 | DOI Listing |
Neurobiol Dis
December 2024
Department of Neurology, University Hospital of Wuerzburg, Germany. Electronic address:
DYT-THAP1 dystonia is a monogenetic form of dystonia, a movement disorder characterized by the involuntary co-contraction of agonistic and antagonistic muscles. The disease is caused by mutations in the THAP1 gene, although the precise mechanisms by which these mutations contribute to the pathophysiology of dystonia remain unclear. The incomplete penetrance of DYT-THAP1 dystonia, estimated at 40 to 60 %, suggests that an environmental trigger may be required for the manifestation of the disease in genetically predisposed individuals.
View Article and Find Full Text PDFNeurogenetics
April 2024
Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany.
Dystonia due to pathogenic variants in the THAP1 gene (DYT-THAP1) shows variable expressivity and reduced penetrance of ~ 50%. Since THAP1 encodes a transcription factor, modifiers influencing this variability likely operate at the gene expression level. This study aimed to assess the transferability of differentially expressed genes (DEGs) in neuronal cells related to pathogenic variants in the THAP1 gene, which were previously identified by transcriptome analyses.
View Article and Find Full Text PDFBackground: Dystonia is one of the most common movement disorders. To date, the genetic causes of dystonia in populations of European descent have been extensively studied. However, other populations, particularly those from the Middle East, have not been adequately studied.
View Article and Find Full Text PDFMov Disord
March 2024
Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
Background: Pathogenic variants in several genes have been linked to genetic forms of isolated or combined dystonia. The phenotypic and genetic spectrum and the frequency of pathogenic variants in these genes have not yet been fully elucidated, neither in patients with dystonia nor with other, sometimes co-occurring movement disorders such as Parkinson's disease (PD).
Objectives: To screen >2000 patients with dystonia or PD for rare variants in known dystonia-causing genes.
Front Neurosci
November 2023
Department of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia.
In this perspective article, we highlight the possible applicability of genetic testing in Parkinson's disease and dystonia patients treated with deep brain stimulation (DBS). DBS, a neuromodulatory technique employing electrical stimulation, has historically targeted motor symptoms in advanced PD and dystonia, yet its precise mechanisms remain elusive. Genetic insights have emerged as potential determinants of DBS efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!