Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Membrane transport constitutes one of the most fundamental processes in all living cells with proteins as major players. Proteins as channels provide highly selective diffusive pathways gated by environmental factors, and as transporters furnish directed, energetically uphill transport consuming energy. X-ray crystallography of channels and transporters furnishes a rapidly growing number of atomic resolution structures, permitting molecular dynamics (MD) simulations to reveal the physical mechanisms underlying channel and transporter function. Ever increasing computational power today permits simulations stretching up to 1 micros, that is, to physiologically relevant time scales. Membrane protein simulations presently focus on ion channels, on aquaporins, on protein-conducting channels, as well as on various transporters. In this review we summarize recent developments in this rapidly evolving field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680122 | PMC |
http://dx.doi.org/10.1016/j.sbi.2009.02.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!