A feasibility study of immobilized and free mixed culture bioaugmentation for treating atrazine in infiltrate.

J Hazard Mater

National Center of Excellence for Environmental and Hazardous Waste Management, Chulalongkorn University, Bangkok 10330, Thailand.

Published: September 2009

A feasibility study of phosphorylated-polyvinyl alcohol immobilized and free mixed bacterial culture bioaugmentation for removing atrazine in agricultural infiltrate was conducted utilizing a sand column setup. The effects of bacterial cell loading and infiltration rate on atrazine degradation were investigated by short-term tests in which the amount of synthetic infiltrate fed through was five times of the void volume (five pore volumes) of the sand column. In addition, the loss of the inoculated atrazine-degrading cultures and the change of bacterial community were determined. Selected tests were continued for monitoring a long-term performance of the system (50 pore volumes of the sand column). The results indicated that the inoculated cells removed 42-80% of the atrazine. The infiltration rate and cell loading significantly affected the atrazine removal. In the short-term tests, the immobilized and free cells provided similar atrazine removal; however, leaching of the free cells was much greater than that of the immobilized cells. For the long-term performance, only the immobilized cells provided consistent atrazine removal efficiency throughout the test. Both immobilized and free cell systems exhibited a significant change in bacterial community structure during the atrazine degradation experiments. The infiltration rate was a significant factor for the change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2009.03.025DOI Listing

Publication Analysis

Top Keywords

immobilized free
16
sand column
12
infiltration rate
12
atrazine removal
12
feasibility study
8
free mixed
8
culture bioaugmentation
8
atrazine
8
cell loading
8
atrazine degradation
8

Similar Publications

Soft nanoforest of metal single atoms for free diffusion catalysis.

Sci Adv

January 2025

School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Metal single atoms are of increasing importance in catalytic reactions. However, the mass diffusion is yet substantially limited by the confined surface of the support in comparison to homogeneous catalysis. Here, we demonstrate that cylindrical micellar brushes with highly solvated poly(2-vinylpyridine) coronas can immobilize 33 types of metal single atoms with 8.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) with high activity and efficient atom utilization for oxygen reduction reactions (ORRs) are imperative for rechargeable Zinc-air batteries (ZABs). However, it is still a prominent challenge to construct a noble-metal-free SAC with low cost but high efficiency. Herein, a novel nitrogen-doped graphene (NrGO) based SAC, immobilized with atomically dispersed single cobalt (Co) atoms (Co-NrGO-SAC), is reported for ORRs.

View Article and Find Full Text PDF

Unlabelled: Ongoing research in biosensor technologies has led to advanced functional materials for healthcare diagnostics, and bacteriophages (phages), demonstrating exceptional utility due to their high specificity, accuracy, rapid, label-free, and wireless detection capabilities with minimal false-positive results. Phage-based-pathogen-detecting biosensors (PBPDBs) include surface plasmon resonance (SPR) biosensors, magnetoelastic (ME), electrochemical, and quartz crystal microbalance (QCM) biosensors. Commonly used substrates for PBPDBs are gold, silicon, glass, carbon-based materials, magnetic particles, and quantum dots.

View Article and Find Full Text PDF

Immobilization and characterization of β-galactosidase from Aspergillus oryzae in PVA-CMC hydrogel.

Int J Biol Macromol

January 2025

Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Turkey. Electronic address:

Creating new formulations of immobilized enzymes has been a major focus of modern biotechnology. In this study, the industrially significant β-galactosidase was immobilized by being trapped in a polyvinyl alcohol and carboxymethyl cellulose (PVA-CMC) gel. The immobilized enzyme was optimized and characterized, and the results were compared with those obtained using free enzymes.

View Article and Find Full Text PDF

Background: Among rugby players, anterior shoulder dislocation is challenging to treat during the in-season period. It often leads to recurrent shoulder instability and requires prolonged rest post-surgery. No studies have determined the effectiveness of immobilization, early muscle strength training, or both in preventing reinjury in this population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!