Mercury in soils and plants in an abandoned cinnabar mining area (SW Spain).

J Hazard Mater

Department of Environmental Geochemistry, IRNASA, CSIC, Apto 257, 37071 Salamanca, Spain.

Published: September 2009

An abandoned cinnabar mining area located in the South-West of Spain has been studied with the aim of assessing its mercury pollution level and enhancing the knowledge about the Hg soil/plant relationship. To do so, soils and plants were sampled near an inactive smelter and around two mining sites present in this area. Critical total Hg concentrations were found in the close environs of pollutant sources. These also show high levels of elemental Hg (up to 8 mg kg(-1)), but quite low exchangeable Hg contents (0.008-0.038 mg kg(-1)). Most plant specimens display in their aboveground tissues Hg concentrations comprised in the range 0.1-10 mg kg(-1), with a great proportion (50%) showing critical levels. Greater Hg contents were found in plant specimens growing in soils with higher elemental Hg concentrations. The plant species displaying the greatest Hg levels are either perennial species of small-medium size and/or showing medium-highly corrugated leaves, or annual plants of small size. Marrubium vulgare L., Bromus madritensis L. and Trifolium angustifolium L. are the plant species with the highest Hg contents (37.6, 12.7 and 9.0 mg kg(-1), respectively). Leaf specific surface seems an important feature in the atmospheric Hg uptake by plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2009.03.009DOI Listing

Publication Analysis

Top Keywords

soils plants
8
abandoned cinnabar
8
cinnabar mining
8
mining area
8
plant specimens
8
plant species
8
mercury soils
4
plants
4
plants abandoned
4
area spain
4

Similar Publications

The Role of Pathogens in Plant Invasion: Accumulation of Local Pathogens Hypothesis.

Microb Ecol

January 2025

State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Beijing, China.

In the past decades, dozens of invasion hypotheses have been proposed to elucidate the invasion mechanisms of exotic species. Among them, the accumulation of local pathogens hypothesis (ALPH) posits that invasive plants can accumulate local generalist pathogens that have more negative effect on native species than on themselves; as a result, invasive plants might gain competitive advantages that eventually lead to their invasion success. However, research on this topic is still quite insufficient.

View Article and Find Full Text PDF

Author Correction: Low-opportunity-cost feed can reduce land-use-related environmental impacts by about one-third in China.

Nat Food

January 2025

College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing, PR China.

View Article and Find Full Text PDF

The contamination of Chinese medicinal materials with cadmium (Cd) is a pressing global issue that poses significant risks to human health. The beneficial effects of selenium (Se) have been established in improving plant growth and reducing Cd accumulation in plant under Cd stress. This study employed soil cultivation experiments to investigate the remediation effects of exogenous Se (0, 0.

View Article and Find Full Text PDF

Salinity tolerance in brewing sorghum is a very important trait, especially in areas that are affected by soil salinity. In order to elucidate the mechanism underlying salt tolerance, we conducted a comparative analysis of the transcriptome and metabolome in two distinct sweet sorghum genotypes, namely the salt-tolerant line NY1298 and the salt-sensitive line MY1176, following exposure to salt treatment. Our initial findings indicate the presence of genotype-specific responses in brewing sorghum under salt stress conditions.

View Article and Find Full Text PDF

Nitrate (NO) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO concentration ranged from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!