Benign, giant cell tumors are often treated by intralesional excision and reconstruction with polymethylmethacrylate (PMMA) bone cement. The exothermic reaction of the in-situ polymerizing PMMA is believed to beneficially kill remaining tumor cells. However, at issue is the extent of this necrotic effect into the surrounding normal bone and the adjacent articular cartilage. Finite element analysis (ABAQUS 6.4-1) was used to determine the extent of possible thermal necrosis around prismatically shaped, PMMA implants (8-24cc in volume), placed into a peripheral, sagittally symmetric, metaphyseal defect in the proximal tibia. Temperature/exposure time conditions indicating necrotic potential during the exotherm of the polymerizing bone cement were found in regions of the cancellous bone within 3mm of the superior surface of the PMMA implant. If less than 3mm of cancellous bone existed between the PMMA implant and the subchondral bone layer, regions of the subchondral bone were also exposed to thermally necrotic conditions. However, as long as there were at least 2mm of uniform subchondral bone above the PMMA implant, the necrotic regions did not extend into the overlying articular cartilage. This was the case even when the PMMA was in direct contact with the subchondral bone. If the subchondral bone is not of sufficient thickness, or is not continuous, then care should be taken to protect the articular cartilage from thermal damage as a result of the reconstruction of the tumor cavity with PMMA bone cement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2009.02.005DOI Listing

Publication Analysis

Top Keywords

subchondral bone
20
articular cartilage
16
bone
12
bone cement
12
pmma implant
12
pmma
9
thermal damage
8
finite element
8
pmma bone
8
cancellous bone
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!