We have identified a consanguineous Pakistani family where oligodontia is inherited along with short stature in an autosomal-recessive fashion. Increased bone density was present in the spine and at the base of the skull. Using high-density single-nucleotide polymorphism microarrays for homozygosity mapping, we identified a 28 Mb homozygous stretch shared between affected individuals on chromosome 11q13. Screening selected candidate genes within this region, we identified a homozygous nonsense mutation, Y774X, within LTBP3, the gene for the latent TGF-beta binding protein 3, an extracellular matrix protein believed to be required for osteoclast function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667979PMC
http://dx.doi.org/10.1016/j.ajhg.2009.03.007DOI Listing

Publication Analysis

Top Keywords

ltbp3 gene
8
latent tgf-beta
8
tgf-beta binding
8
binding protein
8
identified homozygous
8
oligodontia caused
4
caused mutation
4
mutation ltbp3
4
gene encoding
4
encoding latent
4

Similar Publications

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Rationale: The aim of this study is to investigate the de novo mutation and clinical features of latent transforming growth factor-beta-binding protein 3 (LTBP3) gene-associated geleophysic dysplasia 3, and possible mechanisms of action.

Patient Concerns: A nonconsanguineous couple was recruited for this study due to the presence of intrauterine growth restriction. The pregnant woman and her elder daughter presented with skeletal abnormalities with diabetes.

View Article and Find Full Text PDF

Association of exposure to second-hand smoke during childhood with blood DNA methylation.

Environ Int

January 2025

ISGlobal, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; Centro de investigación biomédica en red en epidemiología y salud pública (CIBERESP), Madrid, Spain.

Introduction: By recent estimates, 40% of children worldwide are exposed to second-hand smoke (SHS), which has been associated with adverse health outcomes. While numerous studies have linked maternal smoking during pregnancy (MSDP) to widespread differences in child blood DNA methylation (DNAm), research specifically examining postnatal SHS exposure remains sparse. To address this gap, we conducted epigenome-wide meta-analyses to identify associations of postnatal SHS and child blood DNAm.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the genetic causes of short stature (SS) in a unique group of children from consanguineous families in Sulaimani, Iraq, aiming to enhance understanding of SS genetics and inspire future genetic testing methods for similar populations.
  • Out of 64 eligible children with SS, genetic testing revealed a cause in 31 participants (61%), pinpointing pathogenic variants in various genes linked to growth regulation and other biological processes.
  • The findings suggest that a customized genetic testing approach is necessary to improve diagnosis rates in SS cases within consanguineous groups, as existing gene panels only identify causes in a limited percentage of cases.
View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is a heterogeneous, recurring cancer characterized by a high rate of metastasis, poor prognosis, and lack of efficient therapies. KBU2046, a small molecule inhibitor, can inhibit cell motility in malignant tumors, including breast cancer. However, the specific targets and the corresponding mechanism of its function remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!