A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Animal performance and stress: responses and tolerance limits at different levels of biological organisation. | LitMetric

AI Article Synopsis

  • - Recent advancements in molecular biology, particularly with DNA microarrays, are enhancing our understanding of how stress influences gene regulation in animals, although interpreting these complex changes remains challenging.* - Researchers propose a conceptual model that integrates physiological and transcriptional responses to stress by studying various biological levels, highlighting how different stress types often lead to a shared set of responses centered around oxygen imbalance and oxidative stress.* - Common stress responses involve repairing damage, adjusting cell cycles, altering metabolism, and increasing stress hormone release, all regulated by few key transcription factors and pathways that respond to stress signals.*

Article Abstract

Recent advances in molecular biology and the use of DNA microarrays for gene expression profiling are providing new insights into the animal stress response, particularly the effects of stress on gene regulation. However, interpretation of the complex transcriptional changes that occur during stress still poses many challenges because the relationship between changes at the transcriptional level and other levels of biological organisation is not well understood. To confront these challenges, a conceptual model linking physiological and transcriptional responses to stress would be helpful. Here, we provide the basis for one such model by synthesising data from organismal, endocrine, cellular, molecular, and genomic studies. We show using available examples from ectothermic vertebrates that reduced oxygen levels and oxidative stress are common to many stress conditions and that the responses to different types of stress, such as environmental, handling and confinement stress, often converge at the challenge of dealing with oxygen imbalance and oxidative stress. As a result, a common set of stress responses exists that is largely independent of the type of stressor applied. These common responses include the repair of DNA and protein damage, cell cycle arrest or apoptosis, changes in cellular metabolism that reflect the transition from a state of cellular growth to one of cellular repair, the release of stress hormones, changes in mitochondrial densities and properties, changes in oxygen transport capacities and changes in cardio-respiratory function. Changes at the transcriptional level recapitulate these common responses, with many stress-responsive genes functioning in cell cycle control, regulation of transcription, protein turnover, metabolism, and cellular repair. These common transcriptional responses to stress appear coordinated by only a limited number of stress-inducible and redox-sensitive transcription factors and signal transduction pathways, such as the immediate early genes c-fos and c-jun, the transcription factors NFkappaB and HIF-1alpha, and the JNK and p38 kinase signalling pathways. As an example of environmental stress responses, we present temperature response curves at organismal, cellular and molecular levels. Acclimation and physiological adjustments that can shift the threshold temperatures for the onset of these responses are discussed and include, for example, adjustments of the oxygen delivery system, the heat shock response, cellular repair system, and transcriptome. Ultimately, however, an organism's ability to cope with environmental change is largely determined by its ability to maintain aerobic scope and to prevent loss in performance. These systemic constraints can determine an organism's long-term survival well before cellular and molecular functions are disturbed. The conceptual model we propose here discusses some of the crosslinks between responses at different levels of biological organisation and the central role of oxygen balance and oxidative stress in eliciting these responses with the aim to help the interpretation of environmental genomic data in the context of organismal function and performance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-185X.2008.00073.xDOI Listing

Publication Analysis

Top Keywords

stress
15
stress responses
12
levels biological
12
biological organisation
12
cellular molecular
12
oxidative stress
12
cellular repair
12
responses
11
changes transcriptional
8
transcriptional level
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: