In the present study, we have investigated the effects of the transduction with recombinant adenovirus AdCA-Aralar1 (aspartate-glutamate carrier 1) on the metabolism, function and secretory properties of the glucose- and amino-acid-responsive clonal insulin-secreting cell line BRIN-BD11. Aralar1 overexpression increased long-term (24 h) and acute (20 min) glucose- and amino-acid-stimulated insulin secretion, cellular glucose metabolism, L-alanine and L-glutamine consumption, cellular ATP and glutamate concentrations, and stimulated glutamate release. However, cellular triacylglycerol and glycogen contents were decreased as was lactate production. These findings indicate that increased malate-aspartate shuttle activity positively shifted beta-cell metabolism, thereby increasing glycolysis capacity, stimulus-secretion coupling and, ultimately, enhancing insulin secretion. We conclude that Aralar1 is a key metabolic control site in insulin-secreting cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782311PMC
http://dx.doi.org/10.1042/CS20090126DOI Listing

Publication Analysis

Top Keywords

insulin secretion
12
amino-acid-stimulated insulin
8
overexpression malate-aspartate
4
malate-aspartate nadh
4
nadh shuttle
4
shuttle member
4
member aralar1
4
aralar1 clonal
4
clonal beta-cell
4
beta-cell brin-bd11
4

Similar Publications

Comprehensive review of animal models in diabetes research using chemical agents.

Lab Anim

January 2025

Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey.

Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.

View Article and Find Full Text PDF

In this article, we review the study by Jin , which examined the role of intestinal glucagon-like peptide-1 (GLP-1) in counterregulatory responses to hypoglycemia in patients with type 1 diabetes mellitus (T1DM). With the global rise of T1DM, there is an increased burden on society and healthcare systems. Due to insulin therapy and islet dysfunction, T1DM patients are highly vulnerable to severe hypoglycemia, a leading cause of mortality.

View Article and Find Full Text PDF

FMRFamide-like peptides (FLPs) and their receptors FMRFamide-related peptide receptors (FRPRs) are widely conserved in free-living and parasitic nematodes. Herein, we identified FRPR-1 as a of FLP-1 receptor candidate involved in larval development and diapause in the model nematode Caenorhabditis elegans. Our molecular genetic study, supported by in silico research, revealed the following: 1) frpr-1 loss-of-function completely suppresses the promotion of larval diapause caused by flp-1 overexpression; 2) AlphaFold2 analysis revealed the binding of FLP-1 to FRPR-1; 3) FRPR-1 as well as FLP-1modulates the production and secretion of the predominant insulin-like peptide DAF-28, which is produced in ASI neurons; and 4) the suppression of larval diapause by frpr-1 loss-of-function is completely suppressed by a daf-28 defect.

View Article and Find Full Text PDF

Pancreatic expression of CPT1A is essential for whole body glucose homeostasis by supporting glucose-stimulated insulin secretion.

J Biol Chem

January 2025

Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. Electronic address:

Pancreatic islet β-cells express the Cpt1a gene, which encodes the enzyme carnitine palmitoyltransferase 1A (CPT1A), an enzyme that facilitates entry of long chain fatty acids into the mitochondria. Because fatty acids are required for glucose-stimulated insulin secretion, we tested the hypothesis that CPT1A is essential to support islet β-cell function and mass. In this study, we describe genetic deletion of Cpt1a in pancreatic tissue (Cpt1a) using C57BL/6J mice.

View Article and Find Full Text PDF

Evolving Characteristics of Type 2 Diabetes Mellitus in East Asia.

Endocrinol Metab (Seoul)

January 2025

Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.

In East Asians, type 2 diabetes mellitus (T2DM) is primarily characterized by significant defects in insulin secretion and comparatively low insulin resistance. Recently, the prevalence of T2DM has rapidly increased in East Asian countries, including Korea, occurring concurrently with rising obesity rates. This trend has led to an increase in the average body mass index among East Asian T2DM patients, highlighting the influence of insulin resistance in the development of T2DM within this group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!