Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685465 | PMC |
http://dx.doi.org/10.1586/ern.09.12 | DOI Listing |
Lancet Digit Health
January 2025
Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland; NeuroEngineering Laboratory, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria. Electronic address:
Neuroprosthetics research has entered a stage in which animal models and proof-of-concept studies are translated into clinical applications, often combining implants with artificial intelligence techniques. This new phase raises the question of how clinical trials should be designed to scientifically and ethically address the unique features of neural prostheses. Neural prostheses are complex cyberbiological devices able to acquire and process data; hence, their assessment is not reducible to only third-party safety and efficacy evaluations as in pharmacological research.
View Article and Find Full Text PDFCommun Med (Lond)
January 2025
MED-EL Elektromedizinische Geräte GmbH, Fürstenweg 77a, 6020, Innsbruck, Austria.
Background: Cochlear implants (CIs) are neuroprosthetic devices which restore hearing in severe-to-profound hearing loss through electrical stimulation of the auditory nerve. Current CIs use an externally worn audio processor. A long-term goal in the field has been to develop a device in which all components are contained within a single implant.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Recently, implantable devices for treating peripheral nerve disorders have demonstrated significant potential as neuroprosthetics for diagnostics and electrical stimulation. However, the mechanical mismatch between these devices and nerves frequently results in tissue damage and performance degradation. Although advances are made in stretchable electrodes, challenges, including complex patterning techniques and unstable performance, persist.
View Article and Find Full Text PDFCells
December 2024
Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
Neural electrodes used for bidirectional communication between the nervous system and external devices like prosthetic limbs have advanced in neuroprosthetic applications. However, their effectiveness is hindered by the foreign body reaction, a natural immune response causing inflammation and fibrosis around the implanted device. This process involves protein adsorption, immune cell recruitment, cytokine release, and fibroblast activation, leading to a fibrous capsule formation and a decrease in electrode functionality.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
Neuroprosthetics equipped with artificial synapses hold promise to address some most intricate medical problems, such as human sensory disorders. Yet, it is necessitated and of paramount importance for neuroprosthetics to be able to differentiate significant and insignificant signals. Here, we present an information-filterable artificial retina system that integrates artificial synapses with a signal-integration device for signal perception and processing with attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!