Mixed alkyllithium/lithium alkoxides aggregates are important species in synthetic organic chemistry, but their electronic and geometric properties have not been extensively studied yet. The main objective of this work was to analyze the structure of simple prototypical aggregates in a coordinating solvent with the help of elaborated theoretical chemistry calculations. Within this aim, we have carried out molecular dynamics simulations for MeOLi, (EtLi)(MeOLi), and (EtLi)(2)(MeOLi)(2) systems in dimethyl ether solution. We use a combined QM/MM (quantum mechanics/molecular mechanics) force field that allows an appropriate description of the aggregate structure and of its interactions with the solvent. In the simulations, the aggregates are described at the B3LYP/6-31G(d) level while the solvent is described using the classical OPLS potential. For completeness, the influence of the chemical environment on the C-O-Li bond structure has been analyzed in some detail. The discussion focuses on (1) the distinctive properties of the alkoxide C-O-Li bond pattern, (2) the coordination of solvent molecules to the aggregates (number, stability), and (3) the time fluctuations of main structural parameters (Li-C and Li-O distances). We also show that nonclassical C-H...O hydrogen bonds involving H atoms of the solvent methyl groups and the O atom of the alkoxide are formed in the solvated MeOLi monomer and (EtLi)(MeOLi) dimer. Owing to these specific interactions, the monomer exhibits a nonlinear C-O-Li bond in solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp809211y | DOI Listing |
Harm Reduct J
January 2022
Centre On Drug Policy Evaluation, c/o Li Ka Shing Knowledge Institute of St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada.
Background: The overdose crisis has generated innovative harm reduction and drug market monitoring strategies. In Toronto, Ontario, Canada, a multi-site drug checking service (DCS) pilot project was launched in October 2019. The project provides people who use drugs with information on the chemical composition of their substances, thereby increasing their capacity to make more informed decisions about their drug use and avoid overdose.
View Article and Find Full Text PDFChemistry
December 2015
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany).
X-ray crystal structure analysis of the lithiated allylic α-sulfonyl carbanions [CH2 CHC(Me)SO2 Ph]Li⋅diglyme, [cC6 H8 SO2 tBu]Li⋅PMDETA and [cC7 H10 SO2 tBu]Li⋅PMDETA showed dimeric and monomeric CIPs, having nearly planar anionic C atoms, only OLi bonds, almost planar allylic units with strong CC bond length alternation and the s-trans conformation around C1C2. They adopt a C1S conformation, which is similar to the one generally found for alkyl and aryl substituted α-sulfonyl carbanions. Cryoscopy of [EtCHCHC(Et)SO2 tBu]Li in THF at 164 K revealed an equilibrium between monomers and dimers in a ratio of 83:17, which is similar to the one found by low temperature NMR spectroscopy.
View Article and Find Full Text PDFJ Phys Chem B
May 2009
Equipe Chimie et Biochimie Theoriques and Equipe Synthese Organometallique et Reactivite, SRSMC, Nancy-University, CNRS, BP 239, 54506 Vandoeuvre-les-Nancy, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!