Purpose: To investigate the effect of different surface treatments on the tensile bond strength (TBS) of immediately repaired anterior microfine hybrid restorative composite using nontrimmed hourglass-shaped specimens.
Materials And Methods: Fifty-six nontrimmed hourglass composite specimens were prepared in this study. Eight specimens were used for the evaluation of the cohesive tensile strength as the control group. The remaining 48 were divided into 6 equal groups according to the method of proposed treatment. Groups IM1 and IM2: The specimens were repaired without intermediate treatment. Group IM3: A thin layer of Excite self-priming adhesive was applied to the proposed repaired area of each half-specimen. Group IM4: The repaired area was ground using an abrasive stone, each half-specimen was rinsed and dried, and the adhesive applied. Group IM5: Treatment consisted of 37% phosphoric acid etching of the proposed repair area. The adhesive was then applied. Group IM6: The repaired area was ground and acid etched before applying the adhesive. In all repaired groups except for IM2, repaired specimens were prepared and cured against a single layer of transparent polyester strip (matrix) to prevent the formation of an oxygen inhibition layer. In group IM2, specimens were cured in air without the polyester strip. Specimens were then tested for the repair tensile bond strength (TBS) in a universal testing machine at a crosshead speed of 0.5 mm/min until failure. Twelve more samples were used for SEM characterization of nontreated, ground, acid-etched, and ground/acid-etched samples. The failure mode was evaluated using a stereomicroscope at 30X magnification. All TBS data were expressed as mean and standard deviation, and were analyzed using StatsDirect 2.5.7. One-way ANOVA followed by Tukey-Kramer multiple-comparison post-hoc tests were used to compare the TBS between all tested groups. Differences were considered significant at p < 0.05.
Results: Groups that were cured against a matrix and received no treatment or were repaired with adhesive only had significantly lower TBS than the control group. Groups which were cured without the matrix and received no treatment or grinding/adhesive, acid etching/adhesive, and grinding/acid etching/adhesive showed no significant difference in TBS compared to the control group. SEM evaluation showed that acid etching did not change the morphology of the composite surface. The ground specimens showed a grooved pattern with smeared grinding products. Ground/acid-etched specimens showed removal of the smeared products with a less distinct grinding-groove pattern. Stereomicroscopic evaluation of the debonded surfaces for all repaired groups showed that the failure mode was predominantly adhesive for all evaluated debonded surfaces in each repair group.
Conclusion: In the absence of an oxygen inhibition layer, the immediate repair bond strength was decreased. In contrast, in the presence of an oxygen inhibition layer, the immediate repair bond strength of composite was improved. The application of a thin adhesive layer did not improve the immediate repair bond strength as the other surface treatments did. When the composite was cured against a matrix, chemical and/or mechanical treatments of composite surface prior to application of the adhesive proved to be an effective method to improve the immediate repair bond strength.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Department of Pediatric Dentistry Faculty of Dental Medicine, University of Damascus, Damascus, Syria.
This in vitro study aims to evaluate various surface treatments on the shear bond strength and failure mode of CAD/CAM PMMA teeth to the heat-polymerized acrylic denture base. The study sample consisted of 100 teeth that were divided equally into five groups: Group 1: denture artificial teeth (control), Group 2: PMMA teeth without surface treatment, Group 3: PMMA teeth with MMA etching, Group 4: PMMA teeth with sandblasting (aluminum oxide particles), and Group 5: PMMA teeth with perpendicular grooves. The shear bond strength test was performed using a universal testing machine and the failure mode was recorded.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410006, Hunan, China.
Acrylic pressure-sensitive adhesives (PSAs) are widely applied in transdermal drug delivery systems (TDDS). However, the molecular mechanisms underlying the effect of functional groups of PSAs on drug release and transdermal permeation properties remain insufficiently clear. In this study, we investigated the effect of acrylic PSAs' functional groups on the in vitro release and transdermal permeation properties of a model drug guanfacine (GFC).
View Article and Find Full Text PDFJ Prosthodont Res
January 2025
Institute of Dentistry, Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Turku, Finland.
Purpose: This study investigated the bond strength between short fiber-reinforced resin composite (SFC) and dentin following air abrasion with various types of abrasive particles.
Methods: A total of 120 human molars were prepared for a shear bond strength (SBS) test of the resin composite. The teeth were divided into 12 groups (n = 10/group) based on the air abrasion particle used.
Int J Biol Macromol
January 2025
Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China; College of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130024, PR China. Electronic address:
Solid polymer batteries (SPEs) are highly desirable for energy storage because of the urgent need for higher energy density and safer lithium ion batteries (LIBs). In this work, the single-ion lithium salt PAEK-LiCPSI was synthesized by grafting 3-chloropropanesulfonyl trifluoromethanesulimide lithium (LiCPSI) onto poly(aryl ether ketone) (PAEK). Nanocellulose (NCC), PAEK-LiCPSI, and poly(vinylidene fluoride) (PVDF-HFP) were compounded to obtain NCC reinforced high-performance nanofiber composite polymer electrolytes (NCC/PAEK/PVDF) through electrospinning, which presented tensile strength of 15.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology of China, Chemistry, Jinzhai Road 96, 230026, Hefei, CHINA.
Solar-driven CO2 reduction to ethanol is extremely challenging due to the limited efficiency of charge separation, sluggish kinetics of C-C coupling, and unfavorable formation of oxygenate intermediates. Here, we elaborately design a red polymer carbon nitride (RPCN) consisting of S-N and Cu-N4 dual active sites (Cu/S-RPCN) to address this challenge, which achieves an impressive ethanol evolution rate of 50.4 µmol g-1 h-1 with 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!