Effluents from a small-scale free-surface flow constructed wetland, used for polishing of secondary treated wastewater, contained significantly higher concentrations of potentially viable Giardia duodenalis cysts and Enterocytozoon bieneusi spores than did wetland influents consisting of secondary treated wastewater. Zoonotic Assemblage A of G. duodenalis cysts was identified in wetland inflows, while Assemblage A and two nonhuman infective Assemblages (i.e., C, and E) were present in wetland effluents. E. bieneusi spores represented genotype K based on DNA sequencing analysis of internal transcribed spacer. The study demonstrated that: (1) free-surface flow small-scale constructed wetlands may not provide sufficient remediation for human zoonotic protozoa and fungi present in secondary treated wastewater; (2) dogs and livestock can substantially contribute human-pathogenic protozoan and fungal microorganisms to engineered vegetated wetland systems; and (3) large volumes of wetland effluents can contribute to contamination of surface waters used for recreation and drinking water abstraction and therefore represent a serious public health threat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00436-009-1400-6 | DOI Listing |
Entropy (Basel)
December 2024
AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, al. Mickiewicza 30, 30-059 Kraków, Poland.
Functionally graded materials (FGMs) show continuous variations in properties and offer unique multifunctional capabilities. This study presents a simulation of the powder bed fusion (PBF) process for FGM fabrication using a combination of Unity-based deposition and lattice Boltzmann method (LBM)-based process models. The study introduces a diffusion model that allows for the simulation of material mixtures, in particular AISI 316L austenitic steel and 18Ni maraging 300 martensitic steel.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Korea.
In the present study, we experimentally investigate the liquid flow induced in a rotating drum (cylindrical tank with a short aspect ratio) aligned horizontally, focusing on the variation in the time-averaged and fluctuating flow structures with different fill ratios. For each fill ratio, controlled by varying the water height, we measure the velocity fields at different cross-sectional planes with particle image velocimetry while varying the rotational speed of the drum. Compared to the condition of a fill ratio of 1.
View Article and Find Full Text PDFRep Prog Phys
January 2025
Istituto di Ingegneria del Mare Consiglio Nazionale delle Ricerche, Via di Vallerano 139, Roma, Lazio, 00128, ITALY.
The Smoothed Particle Hydrodynamics (SPH) method is expanding and applied to more and more fields, particularly in engineering. The majority of current SPH developments deal with free-surface and multiphase flows, especially for situations where geometrically complex interface configurations are involved. The present review article covers the last 25 years of development of the method to simulate such flows, discussing the related specific features of the method.
View Article and Find Full Text PDFWater Res
December 2024
UNSW Canberra, School of Engineering (SET), Northcott Drive, Campbell, 2612, ACT, Australia. Electronic address:
In recent years, it has become clear that plastic pollution poses a significant threat to aquatic environments and human health. Rivers act as entry points for land-based plastic waste, while a certain fraction of entrained plastics is carried into marine environments. As such, the accurate modelling of plastic transport processes in riverine systems plays a crucial role in developing adequate remediation strategies.
View Article and Find Full Text PDFPLoS One
November 2024
INSA Lyon, CNRS, CETHIL, UMR5008, Villeurbanne, France.
Free surface flows down a slope occur in various real-life scenarios, such as civil engineering, industry, and natural hazards. Unstable waves can develop at the free surface when inertia is sufficiently strong, indicated by the Reynolds number exceeding a critical value. Although this instability has been investigated for specific fluids with different rheologies, a common framework is still lacking to facilitate comparison among the various models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!