Synthesis and biological evaluation of multivalent carbohydrate ligands obtained by click assembly of pseudo-rotaxanes.

Org Biomol Chem

Centre de Recherche sur les Macromolécules Végétales (CERMAV-CNRS), Affiliated with Université Joseph Fourier, BP 53, 38041, Grenoble, Cedex 9.

Published: April 2009

Multivalent carbohydrate ligands have been prepared by assembling alpha-cyclodextrin-based pseudo-rotaxanes through "click chemistry". The inclusion complex formed by a lactosyl-alpha-CD conjugate and a decane axle carrying a lactosyl stopper at one extremity and an azido group at the other end was dimerized by bis-propargyl spacers of different lengths to provide oligorotaxanes having adjustable threading ratios. For the first time, saccharidic ligands have been introduced on rotaxanes both as a biological recognition element and as a capping group. The supramolecular species have been isolated and characterized by mass spectrometry as well as by 1D and DOSY NMR experiments. Their ability to inhibit the binding of Arachis hypogaea agglutinin to asialofetuin, assayed by enzyme linked lectin assays (ELLA), was shown to be valency-dependent.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b822976gDOI Listing

Publication Analysis

Top Keywords

multivalent carbohydrate
8
carbohydrate ligands
8
synthesis biological
4
biological evaluation
4
evaluation multivalent
4
ligands click
4
click assembly
4
assembly pseudo-rotaxanes
4
pseudo-rotaxanes multivalent
4
ligands prepared
4

Similar Publications

Botulinum neurotoxins (BoNTs), ricin, and many other biological toxins are called AB toxins possessing heterogeneous A and B subunits. We propose herein a quick and safe sensing approach to AB toxins based on their unique quaternary structures. The proposed approach utilizes IgG antibodies against their A-subunits in combination with those human cell-membrane glycolipids that act as the natural ligands of B-subunits.

View Article and Find Full Text PDF

Systems serology aims to broadly profile the antigen binding, Fc biophysical features, immune receptor engagement, and effector functions of antibodies. This experimental approach excels at identifying antibody functional features that are relevant to a particular disease. However, a crucial limitation of this approach is its incomplete description of what structural features of the antibodies are responsible for the observed immune receptor engagement and effector functions.

View Article and Find Full Text PDF

We investigated the transglycosylation reaction of two types of oligosaccharide acceptors, i.e., β-cyclodextrin (CD) derivatives 1 and 2 conjugated with multiple glucose (Glc) units, catalyzed by endo-β-N-acetyl-glucosaminidase from Mucor hiemalis (Endo-M) using the oligosaccharide donor sialoglycopeptide (SGP).

View Article and Find Full Text PDF

Expression-Dependent Tumor Pretargeting via Engineered Avidity.

Mol Pharm

January 2025

Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.

Selective delivery of therapeutic modalities to tumor cells via binding of tumor-selective cell-surface biomarkers has empowered substantial advances in cancer treatment. Yet, tumor cells generally lack a truly specific biomarker that is present in high density on tumor tissue while being completely absent from healthy tissue. Rather, low but nonzero expression in healthy tissues results in on-target, off-tumor activity with detrimental side effects that constrain the therapeutic window or prevent use altogether.

View Article and Find Full Text PDF

Structural and functional snapshots of a broad-specificity endoglucanase from Thermogutta terrifontis for biomass saccharification.

Arch Biochem Biophys

February 2025

The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0QS, UK. Electronic address:

Multifunctionality, processivity, and thermostability are critical for the cost-effective enzymatic saccharification of non-food plant biomass polymers such as β-glucans, celluloses, and xylans to generate biofuels and other valuable products. We present molecular insights into a processive multifunctional endo-1,3-1,4-β-d-glucanase (Tt_End5A) from the hyperthermophilic bacterium Thermogutta terrifontis. Tt_End5A demonstrated activities against a broad spectrum of β-polysaccharides, including barley glucan, lichenan, carboxymethyl cellulose, regenerated amorphous cellulose (RAC), Avicel, xylan, laminarin, mannan, curdlan, xanthan, and various chromogenic substrates at pH 7 and temperatures ranging from 70 to 80°C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!